Three methods for optimization of cross-laboratory and cross-platform microarray expression data

被引:36
作者
Stafford, Phillip [1 ]
Brun, Marcel
机构
[1] Arizona State Univ, Biodesign Inst, Ctr Innovat Med, Tempe, AZ 85287 USA
[2] Translat Genom Res Inst, Div Computat Biol, Phoenix, AZ USA
基金
美国国家卫生研究院;
关键词
D O I
10.1093/nar/gkl1133
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Microarray gene expression data becomes more valuable as our confidence in the results grows. Guaranteeing data quality becomes increasingly important as microarrays are being used to diagnose and treat patients (1-4). The MAQC Quality Control Consortium, the FDA's Critical Path Initiative, NCI's caBIG and others are implementing procedures that will broadly enhance data quality. As GEO continues to grow, its usefulness is constrained by the level of correlation across experiments and general applicability. Although RNA preparation and array platform play important roles in data accuracy, pre-processing is a user-selected factor that has an enormous effect. Normalization of expression data is necessary, but the methods have specific and pronounced effects on precision, accuracy and historical correlation. As a case study, we present a microarray calibration process using normalization as the adjustable parameter. We examine the impact of eight normalizations across both Agilent and Affymetrix expression platforms on three expression readouts: (1) sensitivity and power, (2) functional/ biological interpretation and (3) feature selection and classification error. The reader is encouraged to measure their own discordant data, whether cross-laboratory, cross-platform or across any other variance source, and to use their results to tune the adjustable parameters of their laboratory to ensure increased correlation.
引用
收藏
页数:16
相关论文
共 65 条
[1]  
ADOLPHSON A, 2002, COMMONWEALTH SCI IND
[2]   Identification of high risk breast-cancer patients by gene expression profiling [J].
Ahr, A ;
Karn, T ;
Solbach, C ;
Seiter, T ;
Strebhardt, K ;
Holtrich, U ;
Kaufmann, M .
LANCET, 2002, 359 (9301) :131-132
[3]  
Ahr A, 2001, J PATHOL, V195, P312
[4]   Tissue classification with gene expression profiles [J].
Ben-Dor, A ;
Bruhn, L ;
Friedman, N ;
Nachman, I ;
Schummer, M ;
Yakhini, Z .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2000, 7 (3-4) :559-583
[5]   Molecular classification of cutaneous malignant melanoma by gene expression profiling [J].
Bittner, M ;
Meitzer, P ;
Chen, Y ;
Jiang, Y ;
Seftor, E ;
Hendrix, M ;
Radmacher, M ;
Simon, R ;
Yakhini, Z ;
Ben-Dor, A ;
Sampas, N ;
Dougherty, E ;
Wang, E ;
Marincola, F ;
Gooden, C ;
Lueders, J ;
Glatfelter, A ;
Pollock, P ;
Carpten, J ;
Gillanders, E ;
Leja, D ;
Dietrich, K ;
Beaudry, C ;
Berens, M ;
Alberts, D ;
Sondak, V ;
Hayward, N ;
Trent, J .
NATURE, 2000, 406 (6795) :536-540
[6]   Multi-platform, multi-site, microarray-based human tumor classification [J].
Bloom, G ;
Yang, IV ;
Boulware, D ;
Kwong, KY ;
Coppola, D ;
Eschrich, S ;
Quackenbush, J ;
Yeatman, TJ .
AMERICAN JOURNAL OF PATHOLOGY, 2004, 164 (01) :9-16
[7]   A comparison of normalization methods for high density oligonucleotide array data based on variance and bias [J].
Bolstad, BM ;
Irizarry, RA ;
Åstrand, M ;
Speed, TP .
BIOINFORMATICS, 2003, 19 (02) :185-193
[8]   Evaluation of DNA microarray results with quantitative gene expression platforms [J].
Canales, Roger D. ;
Luo, Yuling ;
Willey, James C. ;
Austermiller, Bradley ;
Barbacioru, Catalin C. ;
Boysen, Cecilie ;
Hunkapiller, Kathryn ;
Jensen, Roderick V. ;
Knight, Charles R. ;
Lee, Kathleen Y. ;
Ma, Yunqing ;
Maqsodi, Botoul ;
Papallo, Adam ;
Peters, Elizabeth Herness ;
Poulter, Karen ;
Ruppel, Patricia L. ;
Samaha, Raymond R. ;
Shi, Leming ;
Yang, Wen ;
Zhang, Lu ;
Goodsaid, Federico M. .
NATURE BIOTECHNOLOGY, 2006, 24 (09) :1115-1122
[9]   Redefinition of affymetrix probe sets by sequence overlap with cDNA microarray probes reduces cross-platform inconsistencies in cancer-associated gene expression measurements [J].
Carter, SL ;
Eklund, AC ;
Mecham, BH ;
Kohane, IS ;
Szallasi, Z .
BMC BIOINFORMATICS, 2005, 6 (1)
[10]   Optimal approach for classification of acute leukemia subtypes based on gene expression data [J].
Cho, JH ;
Lee, D ;
Park, JH ;
Kim, K ;
Lee, IB .
BIOTECHNOLOGY PROGRESS, 2002, 18 (04) :847-854