Localization of Dirac Electrons in Rotated Graphene Bilayers

被引:627
作者
de laissardiere, G. Trambly [1 ]
Mayou, D. [2 ]
Magaud, L. [2 ]
机构
[1] Univ Cergy Pontoise, CNRS, Lab Phys Theor & Modelisat, F-95302 Cergy Pontoise, France
[2] Univ Grenoble 1, CNRS, Inst Neel, F-38402 Grenoble, France
关键词
Graphene; graphite; Moire pattern; electron localization; ab initio; tight binding; FERMIONS; GAS; CONFINEMENT; GRAPHITE; ACCURATE;
D O I
10.1021/nl902948m
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
For Dirac electrons the Klein paradox implies that the confinement is difficult to achieve with an electrostatic potential although it can be of great importance for graphene-based devices. Here, ab initio and tight-binding approaches are combined and show that the wave function of Dirac electrons can be localized in rotated graphene bilayers due to the Moire pattern. This localization of wave function is maximum in the limit of the small rotation angle between the two layers.
引用
收藏
页码:804 / 808
页数:5
相关论文
共 39 条
[1]   Impurity scattering in carbon nanotubes - Absence of back scattering [J].
Ando, T ;
Nakanishi, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (05) :1704-1713
[2]   Bilayer graphene with single and multiple electrostatic barriers: Band structure and transmission [J].
Barbier, Michael ;
Vasilopoulos, P. ;
Peeters, F. M. ;
Pereira, J. Milton, Jr. .
PHYSICAL REVIEW B, 2009, 79 (15)
[3]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[4]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[5]   Quasiparticle Chirality in Epitaxial Graphene Probed at the Nanometer Scale [J].
Brihuega, I. ;
Mallet, P. ;
Bena, C. ;
Bose, S. ;
Michaelis, C. ;
Vitali, L. ;
Varchon, F. ;
Magaud, L. ;
Kern, K. ;
Veuillen, J. Y. .
PHYSICAL REVIEW LETTERS, 2008, 101 (20)
[6]   Density functional calculations on the intricacies of Moire patterns on graphite [J].
Campanera, J. M. ;
Savini, G. ;
Suarez-Martinez, I. ;
Heggie, M. I. .
PHYSICAL REVIEW B, 2007, 75 (23)
[7]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[8]   Epitaxial graphene [J].
de Heer, Walt A. ;
Berger, Claire ;
Wu, Xiaosong ;
First, Phillip N. ;
Conrad, Edward H. ;
Li, Xuebin ;
Li, Tianbo ;
Sprinkle, Michael ;
Hass, Joanna ;
Sadowski, Marcin L. ;
Potemski, Marek ;
Martinez, Gerard .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :92-100
[9]   Quantum transport of slow charge carriers in quasicrystals and correlated systems [J].
de Laissardiere, Guy Trambly ;
Julien, Jean-Pierre ;
Mayou, Didier .
PHYSICAL REVIEW LETTERS, 2006, 97 (02)
[10]   Magnetic confinement of massless Dirac fermions in graphene [J].
De Martino, A. ;
Dell'Anna, L. ;
Egger, R. .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)