Estimate of top-of-atmosphere albedo for a molecular atmosphere over ocean using Clouds and the Earth's Radiant Energy System measurements

被引:12
作者
Kato, S
Loeb, NG
Rutledge, CK
机构
[1] Analyt Serv & Mat Inc, Hampton, VA 23681 USA
[2] Hampton Univ, Ctr Atmospher Sci, Hampton, VA 23668 USA
来源
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES | 2002年 / 107卷 / D19期
关键词
aerosol radiative forcing; ocean surface reflectance; planetary albedo; molecular atmosphere;
D O I
10.1029/2001JD001309
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
[1] The shortwave broadband albedo at the top of a molecular atmosphere over ocean between 40degreesN and 40degreesS is estimated using radiance measurements from the Clouds and the Earth's Radiant Energy System (CERES) instrument and the Visible Infrared Scanner (VIRS) aboard the Tropical Rainfall Measuring Mission satellite. The albedo monotonically increases from 0.059 at a solar zenith angle of 10degrees to 0.107 at a solar zenith angle of 60degrees. The estimated uncertainty in the albedo is 3.5 x 10(-3) caused by the uncertainty in CERES-derived irradiances, uncertainty in VIRS-derived aerosol optical thicknesses, variations in surface wind speed and variations in ozone and water vapor. The estimated uncertainty is similar in magnitude to the standard deviation of 0.003 that is derived from 72 areas which are divided by 20degrees latitude by 20degrees longitude grid boxes. The empirically estimated albedo is compared with the modeled albedo using a radiative transfer model combined with an ocean surface bidirectional reflectivity model. The modeled albedo with standard tropical atmosphere is 0.061 and 0.111 at the solar zenith angles of 10degrees and 60degrees, respectively. The empirically estimated albedo can be used to estimate the direct radiative effect of aerosols at the top of the atmosphere over oceans.
引用
收藏
页数:12
相关论文
共 56 条
[1]  
AHMAD Z, 1982, J ATMOS SCI, V39, P656, DOI 10.1175/1520-0469(1982)039<0656:AIRTCF>2.0.CO
[2]  
2
[3]  
COX C, 1955, J MAR RES, V14, P63
[4]   MEASUREMENT OF THE ROUGHNESS OF THE SEA SURFACE FROM PHOTOGRAPHS OF THE SUNS GLITTER [J].
COX, C ;
MUNK, W .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1954, 44 (11) :838-850
[5]  
DEHAAN JF, 1987, ASTRON ASTROPHYS, V183, P371
[6]   Numerical simulation of the light field in the atmosphere-ocean system using the matrix-operator method [J].
Fell, F ;
Fischer, J .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2001, 69 (03) :351-388
[7]   EFFECT OF SPECULAR REFLECTION AT GROUND ON LIGHT SCATTERED FROM A RAYLEIGH ATMOSPHERE [J].
FRASER, RS ;
WALKER, WH .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1968, 58 (05) :636-&
[8]   ALBEDO OF OCEAN-ATMOSPHERE SYSTEM - INFLUENCE OF SEA FOAM [J].
GORDON, HR ;
JACOBS, MM .
APPLIED OPTICS, 1977, 16 (08) :2257-2260
[9]   Tropospheric aerosol climate forcing in clear-sky satellite observations over the oceans [J].
Haywood, JM ;
Ramaswamy, V ;
Soden, BJ .
SCIENCE, 1999, 283 (5406) :1299-1303
[10]   An emerging ground-based aerosol climatology:: Aerosol optical depth from AERONET [J].
Holben, BN ;
Tanré, D ;
Smirnov, A ;
Eck, TF ;
Slutsker, I ;
Abuhassan, N ;
Newcomb, WW ;
Schafer, JS ;
Chatenet, B ;
Lavenu, F ;
Kaufman, YJ ;
Castle, JV ;
Setzer, A ;
Markham, B ;
Clark, D ;
Frouin, R ;
Halthore, R ;
Karnieli, A ;
O'Neill, NT ;
Pietras, C ;
Pinker, RT ;
Voss, K ;
Zibordi, G .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D11) :12067-12097