Molecular Background of Leak K+ Currents: Two-Pore Domain Potassium Channels

被引:667
作者
Enyedi, Peter [1 ]
Czirjak, Gabor [1 ]
机构
[1] Semmelweis Univ, Dept Physiol, H-1444 Budapest, Hungary
关键词
POLYUNSATURATED FATTY-ACIDS; RAT CAROTID-BODY; CEREBELLAR GRANULE NEURONS; 2 PORE DOMAINS; SMOOTH-MUSCLE-CELLS; THALAMOCORTICAL RELAY NEURONS; ADRENAL GLOMERULOSA CELLS; ROOT GANGLION NEURONS; PROTEIN-KINASE-C; ALTERNATIVE TRANSLATION INITIATION;
D O I
10.1152/physrev.00029.2009
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Enyedi P, Czirjak G. Molecular Background of Leak K+ Currents: Two-Pore Domain Potassium Channels. Physiol Rev 90: 559-605, 2010; doi:10.1152/physrev.00029.2009.-Two-pore domain K+ (K-2P) channels give rise to leak (also called background) K+ currents. The well-known role of background K+ currents is to stabilize the negative resting membrane potential and counterbalance depolarization. However, it has become apparent in the past decade (during the detailed examination of the cloned and corresponding native K-2P channel types) that this primary hyperpolarizing action is not performed passively. The K-2P channels are regulated by a wide variety of voltage-independent factors. Basic physicochemical parameters (e. g., pH, temperature, membrane stretch) and also several intracellular signaling pathways substantially and specifically modulate the different members of the six K-2P channel subfamilies (TWIK, TREK, TASK, TALK, THIK, and TRESK). The deep implication in diverse physiological processes, the circumscribed expression pattern of the different channels, and the interesting pharmacological profile brought the K-2P channel family into the spotlight. In this review, we focus on the physiological roles of K-2P channels in the most extensively investigated cell types, with special emphasis on the molecular mechanisms of channel regulation.
引用
收藏
页码:559 / 605
页数:47
相关论文
共 357 条
[11]   TREK-2, a new member of the mechanosensitive tandem-pore K+ channel family [J].
Bang, H ;
Kim, Y ;
Kim, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (23) :17412-17419
[12]   Block of the background K+ channel TASK-1 contributes to arrhythmogenic effects of platelet-activating factor [J].
Barbuti, A ;
Ishii, S ;
Shimizu, T ;
Robinson, RB ;
Feinmark, SJ .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2002, 282 (06) :H2024-H2030
[13]   Maternally inherited Birk barel mental retardation dysmorphism syndrome caused by a mutation in the genomically imprinted potassium channel KCNK9 [J].
Barel, Ortal ;
Shalev, Stavit A. ;
Ofir, Rivka ;
Cohen, Asi ;
Zlotogora, Joel ;
Shorer, Zamir ;
Mazor, Galia ;
Finer, Gal ;
Khateeb, Shareef ;
Zilberberg, Noam ;
Birk, Ohad S. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2008, 83 (02) :193-199
[14]  
Barratt L, 2000, J PHYSIOL-LONDON, V525, p71P
[15]   Cellular and Molecular Mechanisms of Pain [J].
Basbaum, Allan I. ;
Bautista, Diana M. ;
Scherrer, Gregory ;
Julius, David .
CELL, 2009, 139 (02) :267-284
[16]   Pungent agents from Szechuan peppers excite sensory neurons by inhibiting two-pore potassium channels [J].
Bautista, Diana M. ;
Sigal, Yaron M. ;
Milstein, Aaron D. ;
Garrison, Jennifer L. ;
Zorn, Julie A. ;
Tsuruda, Pamela R. ;
Nicoll, Roger A. ;
Julius, David .
NATURE NEUROSCIENCE, 2008, 11 (07) :772-779
[17]   TASK-1 is a highly modulated pH-sensitive 'leak' K+ channel expressed in brainstem respiratory neurons [J].
Bayliss, DA ;
Talley, EM ;
Sirois, JE ;
Lei, QB .
RESPIRATION PHYSIOLOGY, 2001, 129 (1-2) :159-174
[18]  
Bayliss Douglas A, 2003, Mol Interv, V3, P205, DOI 10.1124/mi.3.4.205
[19]   Axonal transport of TREK and TRAAK potassium channels in rat sciatic nerves [J].
Bearzatto, B ;
Lesage, F ;
Reyes, R ;
Lazdunski, M ;
Laduron, PM .
NEUROREPORT, 2000, 11 (05) :927-930
[20]   p73 poses a barrier to malignant transformation by limiting anchorage-independent growth [J].
Beitzinger, Michaela ;
Hofmann, Lars ;
Oswald, Claudia ;
Beinoraviciute-Kellner, Rasa ;
Sauer, Markus ;
Griesmann, Heidi ;
Bretz, Anne Catherine ;
Burek, Christof ;
Rosenwald, Andreas ;
Stiewe, Thorsten .
EMBO JOURNAL, 2008, 27 (05) :792-803