Long time behavior of solutions to Nernst-Planck and Debye-Huckel drift-diffusion systems

被引:125
作者
Biler, P
Dolbeault, J
机构
[1] Univ Wroclaw, Inst Math, PL-50384 Wroclaw, Poland
[2] Univ Paris 09, CEREMADE, UMR CNRS 7534, F-75775 Paris 16, France
来源
ANNALES HENRI POINCARE | 2000年 / 1卷 / 03期
关键词
D O I
10.1007/s000230050003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the convergence rates of solutions to drift-diffusion systems (arising from plasma, semiconductors and electrolytes theories) to their self-similar or steady states. This analysis involves entropy-type Lyapunov functionals and logarithmic Sobolev inequalities.
引用
收藏
页码:461 / 472
页数:12
相关论文
共 11 条
[1]  
ARNOLD A, 1998, ASYMPTOTIC METHODS K, V12, P1
[2]  
ARNOLD A, 1999, LARGE TIME ASYMPTOCI, P1
[4]   THE DEBYE SYSTEM - EXISTENCE AND LARGE TIME BEHAVIOR OF SOLUTIONS [J].
BILER, P ;
HEBISCH, W ;
NADZIEJA, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (09) :1189-1209
[5]  
BILER P, 1995, STUD MATH, V114, P181
[6]  
Csiszar I, 1967, STUD SCI MATH HUNG, V2, P299
[7]  
DOLBEAULT J, 1999, GEN SOBOLEV INEQUALI, P1
[8]  
DOLBEAULT J, 1999, IN PRESS MATH MOD AP, P1
[9]  
GOGNY D, 1989, RAIRO-MATH MODEL NUM, V23, P137
[10]   A LOWER BOUND FOR DISCRIMINATION INFORMATION IN TERMS OF VARIATION [J].
KULLBACK, S .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1967, 13 (01) :126-+