Lorelogram: A regression approach to exploring dependence in longitudinal categorical responses

被引:41
作者
Heagerty, PJ [1 ]
Zeger, SL
机构
[1] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
[2] Johns Hopkins Univ, Sch Publ Hlth, Dept Biostat, Baltimore, MD 21205 USA
关键词
correlogram; estimating equation; variogram;
D O I
10.2307/2669612
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose flexible regression estimators of the marginal pairwise log-odds ratio measure of association for longitudinal categorical responses. The function that we estimate is the log-odds ratio analog of the correlogram; hence we name the function the lorelogram. Measuring the association of categorical responses on the log-odds scale allows ease of interpretation and allows pairwise association to remain unconstrained by;he marginal means, a feature not shared by correlations with binary or multinomial responses. Estimation of the function is achieved through the use of standard parametric estimating equations or through an extension of generalized additive models that allows nonparametric estimation of dependence functions for fixed smoothing parameters. We apply the methodology to binary longitudinal data where scientific interest focuses on the dependence structure.
引用
收藏
页码:150 / 162
页数:13
相关论文
共 45 条
[31]  
OSullivan F., 1986, Statist. Sci., V1, P502, DOI DOI 10.1214/SS/1177013525
[32]   A CAUTIONARY NOTE ON INFERENCE FOR MARGINAL REGRESSION-MODELS WITH LONGITUDINAL DATA AND GENERAL CORRELATED RESPONSE DATA [J].
PEPE, MS ;
ANDERSON, GL .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1994, 23 (04) :939-951
[33]   ESTIMATING EQUATIONS FOR PARAMETERS IN MEANS AND COVARIANCES OF MULTIVARIATE DISCRETE AND CONTINUOUS RESPONSES [J].
PRENTICE, RL ;
ZHAO, LP .
BIOMETRICS, 1991, 47 (03) :825-839
[34]   CORRELATED BINARY REGRESSION WITH COVARIATES SPECIFIC TO EACH BINARY OBSERVATION [J].
PRENTICE, RL .
BIOMETRICS, 1988, 44 (04) :1033-1048
[35]  
RICE JA, 1991, J ROY STAT SOC B MET, V53, P233
[36]   MODEL ROBUST CONFIDENCE-INTERVALS USING MAXIMUM-LIKELIHOOD ESTIMATORS [J].
ROYALL, RM .
INTERNATIONAL STATISTICAL REVIEW, 1986, 54 (02) :221-226
[37]  
Serfling R.J., 1980, APPROXIMATION THEORE
[38]   A GENERAL-THEORY FOR JACKKNIFE VARIANCE-ESTIMATION [J].
SHAO, J ;
WU, CFJ .
ANNALS OF STATISTICS, 1989, 17 (03) :1176-1197
[39]   10-YEAR COURSE OF SCHIZOPHRENIA - THE MADRAS LONGITUDINAL-STUDY [J].
THARA, R ;
HENRIETTA, M ;
JOSEPH, A ;
RAJKUMAR, S ;
EATON, WW .
ACTA PSYCHIATRICA SCANDINAVICA, 1994, 90 (05) :329-336
[40]   MAXIMUM-LIKELIHOOD ESTIMATION OF MIS-SPECIFIED MODELS [J].
WHITE, H .
ECONOMETRICA, 1982, 50 (01) :1-25