Global Estimates of Fine Particulate Matter using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors

被引:905
作者
van Donkelaar, Aaron [1 ]
Martin, Randall V. [1 ,2 ]
Brauer, Michael [3 ]
Hsu, N. Christina [4 ]
Kahn, Ralph A. [4 ]
Levy, Robert C. [4 ]
Lyapustin, Alexei [4 ,5 ]
Sayer, Andrew M. [4 ,5 ]
Winker, David M. [6 ]
机构
[1] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS, Canada
[2] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA
[3] Univ British Columbia, Sch Populat & Publ Hlth, 2206 East Mall, Vancouver, BC V6T 1Z3, Canada
[4] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[5] Univ Space Res Assoc, Goddard Earth Sci Technol & Res, Greenbelt, MD 20771 USA
[6] NASA, Langley Res Ctr, Hampton, VA 23665 USA
关键词
AEROSOL OPTICAL DEPTH; GEOGRAPHICALLY WEIGHTED REGRESSION; CARBONACEOUS AEROSOLS; UNITED-STATES; MODIS; PM2.5; LAND; RETRIEVALS; ALGORITHM; POLLUTION;
D O I
10.1021/acs.est.5b05833
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We estimated global fine particulate matter (PM2.5) concentrations using information from satellite-, simulation- and monitor-based sources by applying a Geographically Weighted Regression (GWR) to global geophysically based satellite-derived PM2.5 estimates. Aerosol optical depth from multiple satellite products (MISR, MODIS Dark Target, MODIS and SeaWiFS Deep Blue, and MODIS MAIAC) was combined with simulation (GEOS-Chem) based upon their relative uncertainties as determined using ground-based sun photometer (AERONET) observations for 1998-2014. The GWR predictors included simulated aerosol composition and land use information. The resultant PM2.5 estimates were highly consistent (R-2 = 0.81) with out-of-sample cross-validated PM2.5 concentrations from monitors. The global population-weighted annual average PM2.5 concentrations were 3-fold higher than the 10 mu g/m(3) WHO guideline, driven by exposures in Asian and African regions. Estimates in regions with high contributions from mineral dust were associated with higher uncertainty, resulting from both sparse ground-based monitoring, and challenging conditions for retrieval and simulation. This approach demonstrates that the addition of even sparse ground-based measurements to more globally continuous PM2.5 data sources can yield valuable improvements to PM2.5 characterization on a global scale.
引用
收藏
页码:3762 / 3772
页数:11
相关论文
共 52 条
[21]   An analysis of global aerosol type as retrieved by MISR [J].
Kahn, Ralph A. ;
Gaitley, Barbara J. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2015, 120 (09) :4248-4281
[22]   A new hybrid spatio-temporal model for estimating daily multi-year PM2.5 concentrations across northeastern USA using high resolution aerosol optical depth data [J].
Kloog, Itai ;
Chudnovsky, Alexandra A. ;
Just, Allan C. ;
Nordio, Francesco ;
Koutrakis, Petros ;
Coull, Brent A. ;
Lyapustin, Alexei ;
Wang, Yujie ;
Schwartz, Joel .
ATMOSPHERIC ENVIRONMENT, 2014, 95 :581-590
[23]   Retrieval of aerosol optical depth under thin cirrus from MODIS: Application to an ocean algorithm [J].
Lee, Jaehwa ;
Hsu, N. Christina ;
Bettenhausen, Corey ;
Sayer, Andrew M. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (17) :10111-10124
[24]   Towards a long-term global aerosol optical depth record: applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance [J].
Levy, R. C. ;
Munchak, L. A. ;
Mattoo, S. ;
Patadia, F. ;
Remer, L. A. ;
Holz, R. E. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2015, 8 (10) :4083-4110
[25]   The Collection 6 MODIS aerosol products over land and ocean [J].
Levy, R. C. ;
Mattoo, S. ;
Munchak, L. A. ;
Remer, L. A. ;
Sayer, A. M. ;
Patadia, F. ;
Hsu, N. C. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2013, 6 (11) :2989-3034
[26]   Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land [J].
Levy, Robert C. ;
Remer, Lorraine A. ;
Dubovik, Oleg .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D13)
[27]   Biogenic secondary organic aerosol over the United States: Comparison of climatological simulations with observations [J].
Liao, Hong ;
Henze, Daven K. ;
Seinfeld, John H. ;
Wu, Shiliang ;
Mickley, Loretta J. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D6)
[28]   A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010 [J].
Lim, Stephen S. ;
Vos, Theo ;
Flaxman, Abraham D. ;
Danaei, Goodarz ;
Shibuya, Kenji ;
Adair-Rohani, Heather ;
Amann, Markus ;
Anderson, H. Ross ;
Andrews, Kathryn G. ;
Aryee, Martin ;
Atkinson, Charles ;
Bacchus, Loraine J. ;
Bahalim, Adil N. ;
Balakrishnan, Kalpana ;
Balmes, John ;
Barker-Collo, Suzanne ;
Baxter, Amanda ;
Bell, Michelle L. ;
Blore, Jed D. ;
Blyth, Fiona ;
Bonner, Carissa ;
Borges, Guilherme ;
Bourne, Rupert ;
Boussinesq, Michel ;
Brauer, Michael ;
Brooks, Peter ;
Bruce, Nigel G. ;
Brunekreef, Bert ;
Bryan-Hancock, Claire ;
Bucello, Chiara ;
Buchbinder, Rachelle ;
Bull, Fiona ;
Burnett, Richard T. ;
Byers, Tim E. ;
Calabria, Bianca ;
Carapetis, Jonathan ;
Carnahan, Emily ;
Chafe, Zoe ;
Charlson, Fiona ;
Chen, Honglei ;
Chen, Jian Shen ;
Cheng, Andrew Tai-Ann ;
Child, Jennifer Christine ;
Cohen, Aaron ;
Colson, K. Ellicott ;
Cowie, Benjamin C. ;
Darby, Sarah ;
Darling, Susan ;
Davis, Adrian ;
Degenhardt, Louisa .
LANCET, 2012, 380 (9859) :2224-2260
[29]   Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tables [J].
Lyapustin, Alexei ;
Martonchik, John ;
Wang, Yujie ;
Laszlo, Istvan ;
Korkin, Sergey .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116
[30]   Estimating Ground-Level PM2.5 in China Using Satellite Remote Sensing [J].
Ma, Zongwei ;
Hu, Xuefei ;
Huang, Lei ;
Bi, Jun ;
Liu, Yang .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (13) :7436-7444