Peptide conjugate hydrogelators

被引:145
作者
Adams, Dave J. [1 ]
Topham, Paul D. [2 ]
机构
[1] Univ Liverpool, Dept Chem, Liverpool L69 7ZD, Merseyside, England
[2] Aston Univ, Birmingham B4 7ET, W Midlands, England
关键词
HYBRID BLOCK-COPOLYMERS; SELF-ASSEMBLED NANOFIBERS; BETA-SHEET FIBRILS; AMPHIPHILE NANOFIBERS; IN-VITRO; POLY(ETHYLENE GLYCOL); REVERSIBLE HYDROGELS; RADICAL POLYMERIZATION; MECHANICAL-PROPERTIES; BIOLOGICAL-MATERIALS;
D O I
10.1039/c000813c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular gelators are currently receiving a great deal of attention. These are small molecules which, under the appropriate conditions, assemble in solution to, in the majority of cases, give long fibrillar structures which entangle to form a three-dimensional network. This immobilises the solvent, resulting in a gel. Such gelators have potential application in a number of important areas from drug delivery to tissue engineering. Recently, the use of peptide-conjugates has become prevalent with oligopeptides (from as short as two amino acids in length) conjugated to a polymer, alkyl chain or aromatic group such as naphthalene or fluorenylmethoxycarbonyl (Fmoc) being shown to be effective molecular gelators. The field of gelation is extremely large; here we focus our attention on the use of these peptide-conjugates as molecular hydrogelators.
引用
收藏
页码:3707 / 3721
页数:15
相关论文
共 208 条
[1]   Relationship between molecular structure, gelation behaviour and gel properties of Fmoc-dipeptides [J].
Adams, Dave J. ;
Mullen, Leanne M. ;
Berta, Marco ;
Chen, Lin ;
Frith, William J. .
SOFT MATTER, 2010, 6 (09) :1971-1980
[2]   A new method for maintaining homogeneity during liquid-hydrogel transitions using low molecular weight hydrogelators [J].
Adams, Dave J. ;
Butler, Michael F. ;
Frith, William J. ;
Kirkland, Mark ;
Mullen, Leanne ;
Sanderson, Paul .
SOFT MATTER, 2009, 5 (09) :1856-1862
[3]   Self-assembling peptide polyelectrolyte β-sheet complexes form nematic hydrogels [J].
Aggeli, A ;
Bell, M ;
Boden, N ;
Carrick, LM ;
Strong, AE .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (45) :5603-5606
[4]   pH as a trigger of peptide β-sheet self-assembly and reversible switching between nematic and isotropic phases [J].
Aggeli, A ;
Bell, M ;
Carrick, LM ;
Fishwick, CWG ;
Harding, R ;
Mawer, PJ ;
Radford, SE ;
Strong, AE ;
Boden, N .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (32) :9619-9628
[5]   Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures [J].
Almany, L ;
Seliktar, D .
BIOMATERIALS, 2005, 26 (15) :2467-2477
[6]   Probing the Inner Cavities of Hydrogels by Proton Diffusion [J].
Amdursky, N. ;
Orbach, R. ;
Gazit, E. ;
Huppert, D. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (45) :19500-19505
[7]   Modulating the Gelation Properties of Self-Assembling Peptide Amphiphiles [J].
Anderson, Joel M. ;
Andukuri, Adinarayana ;
Lim, Dong Jin ;
Jun, Ho-Wook .
ACS NANO, 2009, 3 (11) :3447-3454
[8]   Peptide-polymer vesicles prepared by atom transfer radical polymerization [J].
Ayres, L ;
Hans, P ;
Adams, J ;
Löwik, DWPM ;
van Hest, JCM .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2005, 43 (24) :6355-6366
[9]   Elastin-based side-chain polymers synthesized by ATRP [J].
Ayres, L ;
Vos, MRJ ;
Adams, PJHM ;
Shklyarevskiy, IO ;
van Hest, JCM .
MACROMOLECULES, 2003, 36 (16) :5967-5973
[10]   Peptide-polymer bioconjugates:: hybrid block copolymers generated via living radical polymerizations from resin-supported peptides [J].
Becker, ML ;
Liu, JQ ;
Wooley, KL .
CHEMICAL COMMUNICATIONS, 2003, (02) :180-181