High-throughput droplet PCR

被引:59
作者
Markey, Amelia L. [2 ]
Mohr, Stephan [2 ]
Day, Philip J. R. [1 ,3 ]
机构
[1] Univ Manchester, Manchester Interdisciplinary Bioctr, Sch Translat Med, Manchester M13 9PL, Lancs, England
[2] Univ Manchester, Manchester Interdisciplinary Bioctr, Sch Chem Engn & Analyt Sci, Manchester M13 9PL, Lancs, England
[3] Univ Manchester, Ctr Integrated Genom Res, Manchester M13 9PL, Lancs, England
关键词
Droplets; PCR; Microfabrication; Quantification; High throughput; POLYMERASE-CHAIN-REACTION; PROTEIN CRYSTALLIZATION CONDITIONS; REAL-TIME PCR; MICROFLUIDIC SYSTEM; CHIP; MICROCHIP; DNA; FABRICATION; CHEMISTRY; DEVICE;
D O I
10.1016/j.ymeth.2010.01.030
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The polymerase chain reaction has facilitated the ready analysis of nucleic acids. A next challenge requires the development of means to unravel the complexity of heterogeneous tissues. This has presented the task of producing massively parallelized quantitative nucleic acid data from the cellular constituents of tissues. The production of aqueous droplets in a two phase flow is shown to be readily and routinely facilitated by miniaturized fluidic devices. Droplets serve as ideal means to package a future generation of PCR, offering an enhanced handling potential by virtue of reactant containment, to concurrently eliminate both contamination and sample loss. This containment also enables the measurement of nucleic acids from populations of cells, or molecules by means of high throughput, single cell analysis. Details are provided for the production of a prototype micro-fluidic device which shows the production and stable flow of droplets which we suggest will be suitable for droplet-based continuous flow micro-fluidic PCR. Suggestions are also made as to the optimal fabrication techniques and the importance of device calibration. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:277 / 281
页数:5
相关论文
共 46 条
[1]  
ACOTA L, BATTLEFIELD ENTERPRI
[2]   Miniaturised nucleic acid analysis [J].
Auroux, PA ;
Koc, Y ;
deMello, A ;
Manz, A ;
Day, PJR .
LAB ON A CHIP, 2004, 4 (06) :534-546
[3]   Raman spectroscopic monitoring of droplet polymerization in a microfluidic device [J].
Barnes, Susan E. ;
Cygan, Zuzanna T. ;
Yates, Jesse K. ;
Beers, Kathryn L. ;
Amis, Eric J. .
ANALYST, 2006, 131 (09) :1027-1033
[4]   The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments [J].
Bustin, Stephen A. ;
Benes, Vladimir ;
Garson, Jeremy A. ;
Hellemans, Jan ;
Huggett, Jim ;
Kubista, Mikael ;
Mueller, Reinhold ;
Nolan, Tania ;
Pfaffl, Michael W. ;
Shipley, Gregory L. ;
Vandesompele, Jo ;
Wittwer, Carl T. .
CLINICAL CHEMISTRY, 2009, 55 (04) :611-622
[5]  
Carles Maria C., 2006, V321, P131
[6]   Total nucleic acid analysis integrated on microfluidic devices [J].
Chen, Lin ;
Manz, Andreas ;
Day, Philip J. R. .
LAB ON A CHIP, 2007, 7 (11) :1413-1423
[7]   A micro circulating PCR chip using a suction-type membrane for fluidic transport [J].
Chien, Liang-Ju ;
Wang, Jung-Hao ;
Hsieh, Tsung-Min ;
Chen, Ping-Hei ;
Chen, Pei-Jer ;
Lee, Da-Sheng ;
Luo, Ching-Hsing ;
Lee, Gwo-Bin .
BIOMEDICAL MICRODEVICES, 2009, 11 (02) :359-367
[8]   Continuous-flow thermal gradient PCR [J].
Crews, Niel ;
Wittwer, Carl ;
Gale, Bruce .
BIOMEDICAL MICRODEVICES, 2008, 10 (02) :187-195
[9]   Miniaturization applied to analysis of nucleic acids in heterogeneous tissues [J].
Day, PJR .
EXPERT REVIEW OF MOLECULAR DIAGNOSTICS, 2006, 6 (01) :23-28
[10]   Contamination free continuous flow microfluidic polymerase chain reaction for quantitative and clinical applications [J].
Dorfman, KD ;
Chabert, M ;
Codarbox, JH ;
Rousseau, G ;
de Cremoux, P ;
Viovy, JL .
ANALYTICAL CHEMISTRY, 2005, 77 (11) :3700-3704