Genome mapping and expression analyses of human intronic noncoding RNAs reveal tissue-specific patterns and enrichment in genes related to regulation of transcription

被引:161
作者
Nakaya, Helder I. [1 ]
Amaral, Paulo P. [1 ]
Louro, Rodrigo [1 ]
Lopes, Andre [1 ]
Fachel, Angela A. [1 ]
Moreira, Yuri B. [1 ]
El-Jundi, Tarik A. [1 ]
da Silva, Aline M. [1 ]
Reis, Eduardo M. [1 ]
Verjovski-Almeida, Sergio [1 ]
机构
[1] Univ Sao Paulo, Inst Quim, Dept Bioquim, BR-05508900 Sao Paulo, Brazil
关键词
D O I
10.1186/gb-2007-8-3-r43
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: RNAs transcribed from intronic regions of genes are involved in a number of processes related to post-transcriptional control of gene expression. However, the complement of human genes in which introns are transcribed, and the number of intronic transcriptional units and their tissue expression patterns are not known. Results: A survey of mRNA and EST public databases revealed more than 55,000 totally intronic noncoding (TIN) RNAs transcribed from the introns of 74% of all unique RefSeq genes. Guided by this information, we designed an oligoarray platform containing sense and antisense probes for each of 7,135 randomly selected TIN transcripts plus the corresponding protein-coding genes. We identified exonic and intronic tissue-specific expression signatures for human liver, prostate and kidney. The most highly expressed antisense TIN RNAs were transcribed from introns of proteincoding genes significantly enriched (p = 0.002 to 0.022) in the 'Regulation of transcription' Gene Ontology category. RNA polymerase II inhibition resulted in increased expression of a fraction of intronic RNAs in cell cultures, suggesting that other RNA polymerases may be involved in their biosynthesis. Members of a subset of intronic and protein-coding signatures transcribed from the same genomic loci have correlated expression patterns, suggesting that intronic RNAs regulate the abundance or the pattern of exon usage in protein-coding messages. Conclusion: We have identified diverse intronic RNA expression patterns, pointing to distinct regulatory roles. This gene-oriented approach, using a combined intron-exon oligoarray, should permit further comparative analysis of intronic transcription under various physiological and pathological conditions, thus advancing current knowledge about the biological functions of these noncoding RNAs.
引用
收藏
页数:25
相关论文
共 64 条
[1]   Ultraconserved elements in the human genome [J].
Bejerano, G ;
Pheasant, M ;
Makunin, I ;
Stephen, S ;
Kent, WJ ;
Mattick, JS ;
Haussler, D .
SCIENCE, 2004, 304 (5675) :1321-1325
[2]   Global identification of human transcribed sequences with genome tiling arrays [J].
Bertone, P ;
Stolc, V ;
Royce, TE ;
Rozowsky, JS ;
Urban, AE ;
Zhu, XW ;
Rinn, JL ;
Tongprasit, W ;
Samanta, M ;
Weissman, S ;
Gerstein, M ;
Snyder, M .
SCIENCE, 2004, 306 (5705) :2242-2246
[3]   Correction of aberrant FGFR1 alternative RNA splicing through targeting of intronic regulatory elements [J].
Bruno, IG ;
Jin, W ;
Cote, GJ .
HUMAN MOLECULAR GENETICS, 2004, 13 (20) :2409-2420
[4]   Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs [J].
Cawley, S ;
Bekiranov, S ;
Ng, HH ;
Kapranov, P ;
Sekinger, EA ;
Kampa, D ;
Piccolboni, A ;
Sementchenko, V ;
Cheng, J ;
Williams, AJ ;
Wheeler, R ;
Wong, B ;
Drenkow, J ;
Yamanaka, M ;
Patel, S ;
Brubaker, S ;
Tammana, H ;
Helt, G ;
Struhl, K ;
Gingeras, TR .
CELL, 2004, 116 (04) :499-509
[5]   Over 20% of human transcripts might form sense-antisense pairs [J].
Chen, JJ ;
Sun, M ;
Kent, WJ ;
Huang, XQ ;
Xie, HQ ;
Wang, WQ ;
Zhou, GL ;
Shi, RZ ;
Rowley, JD .
NUCLEIC ACIDS RESEARCH, 2004, 32 (16) :4812-4820
[6]   Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution [J].
Cheng, J ;
Kapranov, P ;
Drenkow, J ;
Dike, S ;
Brubaker, S ;
Patel, S ;
Long, J ;
Stern, D ;
Tammana, H ;
Helt, G ;
Sementchenko, V ;
Piccolboni, A ;
Bekiranov, S ;
Bailey, DK ;
Ganesh, M ;
Ghosh, S ;
Bell, I ;
Gerhard, DS ;
Gingeras, TR .
SCIENCE, 2005, 308 (5725) :1149-1154
[7]   Categorization and characterization of transcript-confirmed constitutively and alternatively spliced introns and exons from human [J].
Clark, F ;
Thanaraj, TA .
HUMAN MOLECULAR GENETICS, 2002, 11 (04) :451-464
[8]   Finishing the euchromatic sequence of the human genome [J].
Collins, FS ;
Lander, ES ;
Rogers, J ;
Waterston, RH .
NATURE, 2004, 431 (7011) :931-945
[9]   Naturally occurring antisense: Transcriptional leakage or real overlap? [J].
Dahary, D ;
Elroy-Stein, O ;
Sorek, R .
GENOME RESEARCH, 2005, 15 (03) :364-368
[10]   Chimeric snRNA molecules carrying antisense sequences against the splice junctions of exon 51 of the dystrophin pre-mRNA induce exon skipping and restoration of a dystrophin synthesis in Δ48-50 DMD cells [J].
De Angelis, FG ;
Sthandier, O ;
Berarducci, B ;
Toso, S ;
Galluzzi, G ;
Ricci, E ;
Cossu, G ;
Bozzoni, I .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (14) :9456-9461