Arabidopsis metallothioneins 2a and 3 enhance resistance to cadmium when expressed in Vicia faba guard cells

被引:129
作者
Lee, J
Shim, D
Song, WY
Hwang, I
Lee, Y [1 ]
机构
[1] Pohang Univ Sci & Technol, Div Mol Life Sci, Natl Res Lab Phytoremediat, Pohang 790784, South Korea
[2] Pohang Univ Sci & Technol, Ctr Plant Intracellular Trafficking, Pohang 790784, South Korea
关键词
Arabidopsis thaliana; cadmium resistance; localization; metallothionein; reactive oxygen species; Vicia faba guard cells;
D O I
10.1007/s11103-004-0190-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Arabidopsis metallothionein genes AtMT1 and AtMT2 confer Cd(II) resistance to Cd(II)-sensitive yeast, but it has not been directly shown whether they or other metallothioneins provide the same protection to plants. We tested whether AtMT2a and AtMT3 can confer Cd(II) resistance to plant cells by introducing GFP- or RFP-fused forms into guard cells of Vicia faba by biolistic bombardment. AtMT2a and AtMT3 protected guard cell chloroplasts from degradation upon exposure to Cd(II), an effect that was confirmed using an FDA assay to test the viability of the exposed guard cells. AtMT2a- and AtMT3-GFP were localized in the cytoplasm both before and after treatment of V. faba guard cells or Arabidopsis protoplasts with Cd(II), and the levels of reactive oxygen species were lower in transformed guard cells than in non-transformed cells after Cd(II)-treatment. These results suggest that the Cd(II)-detoxification mechanism of AtMT2a and AtMT3 may not include sequestration into vacuoles or other organelles, but does involve reduction of the level of reactive oxygen species in Cd(II)-treated cells. Increased expression of AtMT2a and AtMT3 was observed in Arabidopsis seedlings exposed to Cd(II). Together, these data support a role for the metallothioneins AtMT2a and AtMT3 in Cd(II) resistance in intact plant cells.
引用
收藏
页码:805 / 815
页数:11
相关论文
共 28 条
[1]   Cell death of barley aleurone protoplasts is mediated by reactive oxygen species [J].
Bethke, PC ;
Jones, RL .
PLANT JOURNAL, 2001, 25 (01) :19-29
[2]   Differential expression of a senescence-enhanced metallothionein gene in Arabidopsis in response to isolates of Peronospora parasitica and Pseudomonas syringae [J].
Butt, A ;
Mousley, C ;
Morris, K ;
Beynon, J ;
Can, C ;
Holub, E ;
Greenberg, JT ;
Buchanan-Wollaston, V .
PLANT JOURNAL, 1998, 16 (02) :209-221
[3]   Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast [J].
Clemens, S ;
Kim, EJ ;
Neumann, D ;
Schroeder, JI .
EMBO JOURNAL, 1999, 18 (12) :3325-3333
[4]   Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis [J].
Cobbett, C ;
Goldsbrough, P .
ANNUAL REVIEW OF PLANT BIOLOGY, 2002, 53 :159-182
[5]   The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in γ-glutamylcysteine synthetase. [J].
Cobbett, CS ;
May, MJ ;
Howden, R ;
Rolls, B .
PLANT JOURNAL, 1998, 16 (01) :73-78
[6]   Identification of genes expressed in response to light stress in leaves of Arabidopsis thaliana using RNA differential display [J].
Dunaeva, M ;
Adamska, W .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2001, 268 (21) :5521-5529
[7]   Phytochelatin synthase genes from arabidopsis and the yeast Schizosaccharomyces pombe [J].
Ha, SB ;
Smith, AP ;
Howden, R ;
Dietrich, WM ;
Bugg, S ;
O'Connell, MJ ;
Goldsbrough, PB ;
Cobbett, CS .
PLANT CELL, 1999, 11 (06) :1153-1163
[8]   Cellular mechanisms for heavy metal detoxification and tolerance [J].
Hall, JL .
JOURNAL OF EXPERIMENTAL BOTANY, 2002, 53 (366) :1-11
[9]   Expression of Arabidopsis CAX2 in tobacco.: Altered metal accumulation and increased manganese tolerance [J].
Hirschi, KD ;
Korenkov, VD ;
Wilganowski, NL ;
Wagner, GJ .
PLANT PHYSIOLOGY, 2000, 124 (01) :125-133
[10]   CADMIUM-SENSITIVE, CAD1 MUTANTS OF ARABIDOPSIS-THALIANA ARE PHYTOCHELATIN DEFICIENT [J].
HOWDEN, R ;
GOLDSBROUGH, PB ;
ANDERSEN, CR ;
COBBETT, CS .
PLANT PHYSIOLOGY, 1995, 107 (04) :1059-1066