Estimation of the noise in magnitude MR images

被引:195
作者
Sijbers, J [1 ]
den Dekker, AJ [1 ]
Van Audekerke, J [1 ]
Verhoye, M [1 ]
Van Dyck, D [1 ]
机构
[1] Univ Antwerp, Dept Phys, B-2020 Antwerp, Belgium
关键词
noise estimation; double acquisition; Rice distribution;
D O I
10.1016/S0730-725X(97)00199-9
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Magnitude magnetic resonance data are Rician distributed. In this note a new method is proposed to estimate the image noise variance for this type of data distribution, The method is based on a double image acquisition, thereby exploiting the knowledge of the Rice distribution moments. (C) 1998 Elsevier Science Inc.
引用
收藏
页码:87 / 90
页数:4
相关论文
共 13 条
[1]   Digital image restoration [J].
Banham, MR ;
Katsaggelos, AK .
IEEE SIGNAL PROCESSING MAGAZINE, 1997, 14 (02) :24-41
[2]  
Garnier S. J., 1995, Journal of Mathematical Imaging and Vision, V5, P7, DOI 10.1007/BF01250250
[3]   NONLINEAR ANISOTROPIC FILTERING OF MRI DATA [J].
GERIG, G ;
KUBLER, O ;
KIKINIS, R ;
JOLESZ, FA .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1992, 11 (02) :221-232
[4]   THE RICIAN DISTRIBUTION OF NOISY MRI DATA [J].
GUDBJARTSSON, H ;
PATZ, S .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (06) :910-914
[5]   MEASUREMENT OF SIGNAL INTENSITIES IN THE PRESENCE OF NOISE IN MR IMAGES [J].
HENKELMAN, RM .
MEDICAL PHYSICS, 1985, 12 (02) :232-233
[6]   MEASURING SIGNAL-TO-NOISE RATIOS IN MR IMAGING [J].
KAUFMAN, L ;
KRAMER, DM ;
CROOKS, LE ;
ORTENDAHL, DA .
RADIOLOGY, 1989, 173 (01) :265-267
[7]   AN UNBIASED SIGNAL-TO-NOISE RATIO MEASURE FOR MAGNETIC-RESONANCE IMAGES [J].
MCGIBNEY, G ;
SMITH, MR .
MEDICAL PHYSICS, 1993, 20 (04) :1077-1078
[8]   THE USE OF POWER IMAGES TO PERFORM QUANTITATIVE-ANALYSIS ON LOW SNR MR-IMAGES [J].
MILLER, AJ ;
JOSEPH, PM .
MAGNETIC RESONANCE IMAGING, 1993, 11 (07) :1051-1056
[9]   SIGNAL-TO-NOISE MEASURES FOR MAGNETIC-RESONANCE IMAGERS [J].
MURPHY, BW ;
CARSON, PL ;
ELLIS, JH ;
ZHANG, YT ;
HYDE, RJ ;
CHENEVERT, TL .
MAGNETIC RESONANCE IMAGING, 1993, 11 (03) :425-428
[10]  
Papoulis A., 1984, Probability, Random Variables and Stochastic Processes, V2nd