Potential applications for pyrolysis-GC/MS in bioremediation

被引:7
作者
White, DM [1 ]
Irvine, RL [1 ]
机构
[1] Univ Alaska Fairbanks, Dept Civil & Environm Engn, Fairbanks, AK 99775 USA
关键词
D O I
10.1023/A:1005707823140
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Preliminary data are presented from a set of experiments designed to promote the use of pyrolysis-GC/MS in bioremediation. Studies were designed to aid researchers in developing a pyrolysis-GC/MS method and identifying how the method could help characterize bioremediation, particularly in organic soils. Since sample size affects the results of pyrolytic analyses, the first experiment demonstrated how an appropriate sample size might be selected for pyrolysis-GC/MS testing. In order to show how quantitative results can be obtained from pyrolysis-GC/MS, a second experiment determined the 'goodness of fit' for a standard curve relating the chromatographic area under a pyrogram to actual mass units. The third experiment investigated ways in which pyrolysis-GC/MS analyses could improve our understanding of bioremediation in organic soils contaminated with crude oil. Experimental results confirmed that differences in analyte mass affect the extent of pyrolytic cracking. In pyrograms of the test soil, the ratio of toluene to total product showed that for a sample mass between 1.8 and 2.0 mg, variability in the cracking pattern was minimized. Unlike deviations outside this range, small deviations within the range did not appreciably effect the toluene ratio. A standard curve was prepared for pyrolytic analyses by plotting the total chromatographic area of all pyrolysis products versus the mass of organic material pyrolyzed. These data were fit with a straight line having an 'R-2, of 0.73. Based on a bench scale bioremediation experiment, preliminary pyrolysis-GC/MS results were used to predict that compounds derived from lignin and carbohydrates would be degraded faster in uncontaminated than contaminated soils. Appreciable degradation of both compounds, however, occurred in contaminated soils. In addition, results suggested that using pyrolysis-GC/MS to quantify the sum of all n-alkanes and the ratio of odd to even chain n-alkanes could help researchers distinguish between the degradation of petroleum and non-petroleum hydrocarbons in contaminated and uncontaminated soils.
引用
收藏
页码:53 / 65
页数:13
相关论文
共 28 条
[11]   SCREENING OF ANTHROPOGENIC COMPOUNDS IN POLLUTED SEDIMENTS AND SOILS BY FLASH EVAPORATION PYROLYSIS-GAS CHROMATOGRAPHY-MASS SPECTROMETRY [J].
DELEEUW, JW ;
DELEER, EWB ;
DAMSTE, JSS ;
SCHUYL, PJW .
ANALYTICAL CHEMISTRY, 1986, 58 (08) :1852-1857
[12]  
Gill R.A., 1989, FATE EFFECTS OIL FRE, P11
[13]   ANALYTICAL PYROLYSIS - AN OVERVIEW [J].
IRWIN, WJ .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 1979, 1 (02) :89-122
[14]   PYROLYSIS GAS CHROMATOGRAPHY OF SOIL ORGANIC MATTER .1. INTRODUCTION AND METHODOLOGY [J].
KIMBER, RWL ;
SEARLE, PL .
GEODERMA, 1970, 4 (01) :47-&
[15]  
LAVANDA AO, 1983, TESTING PEATS ORGANI, P37
[16]  
LIU DLS, 1973, MICROBIAL DEGRADATIO, P95
[17]   PYROLYSIS-MASS SPECTROMETRY PATTERN-RECOGNITION ON A WELL-CHARACTERIZED SUITE OF HUMIC SAMPLES [J].
MACCARTHY, P ;
DELUCA, SJ ;
VOORHEES, KJ ;
MALCOLM, RL ;
THURMAN, EM .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1985, 49 (10) :2091-2096
[18]   SOLUBILITY-TEMPERATURE EFFECT ON ADSORPTION OF GAMMA-BHC AND BETA-BHC FROM AQUEOUS AND HEXANE SOLUTIONS BY SOIL MATERIALS [J].
MILLS, AC ;
BIGGAR, JW .
SOIL SCIENCE SOCIETY OF AMERICA PROCEEDINGS, 1969, 33 (02) :210-&
[19]  
MORRISON RI, 1966, CHEM IND-LONDON, P596
[20]   COMPARISONS OF SOIL ORGANIC-MATTER AND ITS FRACTIONS BY PYROLYSIS MASS-SPECTROMETRY [J].
SAIZJIMENEZ, C ;
HAIDER, K ;
MEUZELAAR, HLC .
GEODERMA, 1979, 22 (01) :25-37