siRNA and miRNA: an insight into RISCs

被引:292
作者
Tang, GL [1 ]
机构
[1] Univ Massachusetts, Sch Med, Dept Biochem & Mol Pharmacol, Worcester, MA 01605 USA
关键词
D O I
10.1016/j.tibs.2004.12.007
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Two classes of short RNA molecule, small interfering RNA (siRNA) and microRNA (miRNA), have been identified as sequence-specific posttranscriptional regulators of gene expression. siRNA and miRNA are incorporated into related RNA-induced silencing complexes (RISCs), termed siRISC and miRISC, respectively. The current model argues that siRISC and miRISC are functionally interchangeable and target specific mRNAs for cleavage or translational repression, depending on the extent of sequence complementarity between the small RNA and its target. Emerging evidence indicates, however, that siRISC and miRISC are distinct complexes that regulate mRNA stability and translation. The assembly of RISCs can be traced from the biogenesis of the small RNA molecules and the recruitment of these RNAs by the RISC loading complex (RLC) to the transition of the RLC into the active RISC. Target recognition by the RISC can then take place through different interacting modes.
引用
收藏
页码:106 / 114
页数:9
相关论文
共 77 条
  • [1] Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes
    Aukerman, MJ
    Sakai, H
    [J]. PLANT CELL, 2003, 15 (11) : 2730 - 2741
  • [2] MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004)
    Bartel, David P.
    [J]. CELL, 2007, 131 (04) : 11 - 29
  • [3] RNA silencing in plants
    Baulcombe, D
    [J]. NATURE, 2004, 431 (7006) : 356 - 363
  • [4] Role for a bidentate ribonuclease in the initiation step of RNA interference
    Bernstein, E
    Caudy, AA
    Hammond, SM
    Hannon, GJ
    [J]. NATURE, 2001, 409 (6818) : 363 - 366
  • [5] Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines
    Billy, E
    Brondani, V
    Zhang, HD
    Müller, U
    Filipowicz, W
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (25) : 14428 - 14433
  • [6] AGO1 defines a novel locus of Arabidopsis controlling leaf development
    Bohmert, K
    Camus, I
    Bellini, C
    Bouchez, D
    Caboche, M
    Benning, C
    [J]. EMBO JOURNAL, 1998, 17 (01) : 170 - 180
  • [7] The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis
    Carmell, MA
    Xuan, ZY
    Zhang, MQ
    Hannon, GJ
    [J]. GENES & DEVELOPMENT, 2002, 16 (21) : 2733 - 2742
  • [8] A micrococcal nuclease homologue in RNAi effector complexes
    Caudy, AA
    Ketting, RF
    Hammond, SM
    Denli, AM
    Bathoorn, AMP
    Tops, BBJ
    Silva, JM
    Myers, MM
    Hannon, GJ
    Plasterk, RHA
    [J]. NATURE, 2003, 425 (6956) : 411 - 414
  • [9] Fragile X-related protein and VIG associate with the RNA interference machinery
    Caudy, AA
    Myers, M
    Hannon, GJ
    Hammond, SM
    [J]. GENES & DEVELOPMENT, 2002, 16 (19) : 2491 - 2496
  • [10] A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development
    Chen, XM
    [J]. SCIENCE, 2004, 303 (5666) : 2022 - 2025