Myc proteins as therapeutic targets

被引:162
作者
Gustafson, W. C. [1 ,2 ]
Weiss, W. A. [1 ,3 ,4 ]
机构
[1] Univ Calif San Francisco, Dept Pediat, San Francisco, CA 94158 USA
[2] Univ Calif San Francisco, Div Pediat Hematol Oncol, San Francisco, CA 94143 USA
[3] Univ Calif San Francisco, Dept Neurol, San Francisco, CA 94143 USA
[4] Univ Calif San Francisco, Dept Neurosurg, San Francisco, CA 94143 USA
关键词
myc; mycn; neuroblastoma; N-myc; mTor; PI3K; ANAPLASTIC LYMPHOMA KINASE; INITIAL TESTING STAGE-1; ARF TUMOR-SUPPRESSOR; C-MYC; N-MYC; GENE-EXPRESSION; DNA-BINDING; CELL-LINES; TRANSCRIPTIONAL CONTROL; MALIGNANT PROGRESSION;
D O I
10.1038/onc.2009.512
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Myc proteins (c-myc, Mycn and Mycl) target proliferative and apoptotic pathways vital for progression in cancer. Amplification of the MYCN gene has emerged as one of the clearest indicators of aggressive and chemotherapy-refractory disease in children with neuroblastoma, the most common extracranial solid tumor of childhood. Phosphorylation and ubiquitin-mediated modulation of Myc protein influence stability and represent potential targets for therapeutic intervention. Phosphorylation of Myc proteins is controlled in-part by the receptor tyrosine kinase/phosphatidylinositol 3-kinase/Akt/mTOR signaling, with additional contributions from Aurora A kinase. Myc proteins regulate apoptosis in part through interactions with the p53/Mdm2/Arf signaling pathway. Mutation in p53 is commonly observed in patients with relapsed neuroblastoma, contributing to both biology and therapeutic resistance. This review examines Myc function and regulation in neuroblastoma, and discusses emerging therapies that target Mycn. Oncogene (2010) 29, 1249-1259; doi:10.1038/onc.2009.512; published online 25 January 2010
引用
收藏
页码:1249 / 1259
页数:11
相关论文
共 202 条
[1]  
Alaminos M, 2003, CANCER RES, V63, P4538
[2]   TRANSCRIPTIONAL ACTIVATION BY THE HUMAN C-MYC ONCOPROTEIN IN YEAST REQUIRES INTERACTION WITH MAX [J].
AMATI, B ;
DALTON, S ;
BROOKS, MW ;
LITTLEWOOD, TD ;
EVAN, GI ;
LAND, H .
NATURE, 1992, 359 (6394) :423-426
[3]   p14ARF interacts with N-Myc and inhibits its transcriptional activity [J].
Amente, Stefano ;
Gargano, Barbara ;
Diolaiti, Daniel ;
Della Valle, Giuliano ;
Lania, Luigi ;
Majello, Barbara .
FEBS LETTERS, 2007, 581 (05) :821-825
[4]  
ARMSTRONG BC, 1992, CELL GROWTH DIFFER, V3, P385
[5]   Protein phosphatase 2A regulatory subunit b56α associates with c-Myc and negatively regulates c-Myc accumulation [J].
Arnold, HK ;
Sears, RC .
MOLECULAR AND CELLULAR BIOLOGY, 2006, 26 (07) :2832-2844
[6]   The Axin1 scaffold protein promotes formation of a degradation complex for c-Myc [J].
Arnold, Hugh K. ;
Zhang, Xiaoli ;
Daniel, Colin J. ;
Tibbitts, Deanne ;
Escamilla-Powers, Julie ;
Farrell, Amy ;
Tokarz, Sara ;
Morgan, Charlie ;
Sears, Rosalie C. .
EMBO JOURNAL, 2009, 28 (05) :500-512
[7]  
ASKEW DS, 1991, ONCOGENE, V6, P1915
[8]   Chromosome 1p and 11q deletions and outcome in neuroblastoma [J].
Attiyeh, EF ;
London, WB ;
Mossé, YP ;
Wang, Q ;
Winter, C ;
Khazi, D ;
McGrady, PW ;
Seeger, RC ;
Look, AT ;
Shimada, H ;
Brodeur, GM ;
Cohn, SL ;
Matthay, KK ;
Maris, JM .
NEW ENGLAND JOURNAL OF MEDICINE, 2005, 353 (21) :2243-2253
[9]   MAD - A HETERODIMERIC PARTNER FOR MAX THAT ANTAGONIZES MYC TRANSCRIPTIONAL ACTIVITY [J].
AYER, DE ;
KRETZNER, L ;
EISENMAN, RN .
CELL, 1993, 72 (02) :211-222
[10]   c-Myc hot spot mutations in lymphomas result in inefficient ubiquitination and decreased proteasome-mediated turnover [J].
Bahram, F ;
von der Lehr, N ;
Cetinkaya, C ;
Larsson, LG .
BLOOD, 2000, 95 (06) :2104-2110