Graphene on a Hydrophobic Substrate: Doping Reduction and Hysteresis Suppression under Ambient Conditions

被引:380
作者
Lafkioti, Myrsini [1 ]
Krauss, Benjamin [1 ]
Lohmann, Timm [1 ]
Zschieschang, Ute [1 ]
Klauk, Hagen [1 ]
v Klitzing, Klaus [1 ]
Smet, Jurgen H. [1 ]
机构
[1] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany
关键词
Graphene; transport properties; hydrophobic; self-assembled layer; hexamethyldisilazane; hysteresis; doping; EPITAXIAL GRAPHENE; LARGE-AREA; GAS; TRANSPORT; MOLECULES; LAYERS; PHASE; FILMS;
D O I
10.1021/nl903162a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The intrinsic doping level of graphene prepared by mechanical exfoliation and standard lithography procedures on thermally oxidized silicon varies significantly and seems to depend strongly on processing details and the substrate morphology. Moreover, transport properties of such graphene devices suffer from hysteretic behavior under ambient conditions. The hysteresis presumably originates from dipolar adsorbates on the substrate or graphene surface. Here, we demonstrate that it is possible to reliably obtain low intrinsic doping levels and to strongly suppress hysteretic behavior even in ambient air by depositing graphene on top of a thin, hydrophobic self-assembled layer of hexamethyldisilazane (HMDS). The HMDS serves as a reproducible template that prevents the adsorption of dipolar substances. It may also screen the influence of substrate deficiencies.
引用
收藏
页码:1149 / 1153
页数:5
相关论文
共 46 条
[1]   Effects of Surface Chemistry on Structure and Thermodynamics of Water Layers at Solid-Vapor Interfaces [J].
Asay, David B. ;
Barnette, Anna L. ;
Kim, Seong H. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (06) :2128-2133
[2]   Evolution of the adsorbed water layer structure on silicon oxide at room temperature [J].
Asay, DB ;
Kim, SH .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (35) :16760-16763
[3]   Transport Properties of Graphene in the High-Current Limit [J].
Barreiro, Amelia ;
Lazzeri, Michele ;
Moser, Joel ;
Mauri, Francesco ;
Bachtold, Adrian .
PHYSICAL REVIEW LETTERS, 2009, 103 (07)
[4]   Specular andreev Reflection in graphene [J].
Beenakker, C. W. J. .
PHYSICAL REVIEW LETTERS, 2006, 97 (06)
[5]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[6]   Quasiparticle dynamics in graphene [J].
Bostwick, Aaron ;
Ohta, Taisuke ;
Seyller, Thomas ;
Horn, Karsten ;
Rotenberg, Eli .
NATURE PHYSICS, 2007, 3 (01) :36-40
[7]   Influence of mobile ions on nanotube based FET devices [J].
Bradley, K ;
Cumings, J ;
Star, A ;
Gabriel, JCP ;
Grüner, G .
NANO LETTERS, 2003, 3 (05) :639-641
[8]   Hot Phonons in an Electrically Biased Graphene Constriction [J].
Chae, Dong-Hun ;
Krauss, Benjamin ;
von Klitzing, Klaus ;
Smet, Jurgen H. .
NANO LETTERS, 2010, 10 (02) :466-471
[9]   The focusing of electron flow and a Veselago lens in graphene p-n junctions [J].
Cheianov, Vadim V. ;
Fal'ko, Vladimir ;
Altshuler, B. L. .
SCIENCE, 2007, 315 (5816) :1252-1255
[10]   Charged-impurity scattering in graphene [J].
Chen, J. -H. ;
Jang, C. ;
Adam, S. ;
Fuhrer, M. S. ;
Williams, E. D. ;
Ishigami, M. .
NATURE PHYSICS, 2008, 4 (05) :377-381