Density matrix renormalization group and periodic boundary conditions: A quantum information perspective

被引:448
作者
Verstraete, F [1 ]
Porras, D [1 ]
Cirac, JI [1 ]
机构
[1] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
关键词
D O I
10.1103/PhysRevLett.93.227205
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a picture to analyze the density matrix renormalization group (DMRG) numerical method from a quantum information perspective. This leads to a variational formulation of DMRG which allows for dramatic improvements in the case of problems with periodic boundary conditions. The picture also explains some features of the method in terms of entanglement and teleportation.
引用
收藏
页数:4
相关论文
共 20 条
[1]   VALENCE BOND GROUND-STATES IN ISOTROPIC QUANTUM ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 115 (03) :477-528
[2]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[3]   Equivalence of the variational matrix product method and the density matrix renormalization group applied to spin chains [J].
Dukelsky, J ;
Martin-Delgado, MA ;
Nishino, T ;
Sierra, G .
EUROPHYSICS LETTERS, 1998, 43 (04) :457-462
[4]   FINITELY CORRELATED STATES ON QUANTUM SPIN CHAINS [J].
FANNES, M ;
NACHTERGAELE, B ;
WERNER, RF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (03) :443-490
[5]   An inverse free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems [J].
Golub, GH ;
Ye, Q .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 24 (01) :312-334
[6]   Optimizing the density-matrix renormalization group method using quantum information entropy -: art. no. 195116 [J].
Legeza, O ;
Sólyom, J .
PHYSICAL REVIEW B, 2003, 68 (19)
[7]   LANCZOS CALCULATION FOR THE S = 1/2 ANTIFERROMAGNETIC HEISENBERG CHAIN UP TO N = 28 SPINS [J].
MEDEIROS, D ;
CABRERA, GG .
PHYSICAL REVIEW B, 1991, 43 (04) :3703-3705
[8]  
Nielsen Michael A, 2002, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744
[9]  
Osborne TJ, 2002, PHYS REV A, V66, DOI 10.1103/PhysRevA.66.032110
[10]  
OSTLUND S, 1995, PHYS REV LETT, V75, P3537, DOI 10.1103/PhysRevLett.75.3537