Traffic Sign Recognition With Hinge Loss Trained Convolutional Neural Networks

被引:218
作者
Jin, Junqi [1 ]
Fu, Kun [1 ]
Zhang, Changshui [1 ]
机构
[1] Tsinghua Univ, Tsinghua Natl Lab Informat Sci & Technol, State Key Lab Intelligent Technol & Syst, Dept Automat, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolutional neural networks (CNNs); hinge loss; stochastic gradient descent (SGD); traffic sign recognition (TSR);
D O I
10.1109/TITS.2014.2308281
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Traffic sign recognition (TSR) is an important and challenging task for intelligent transportation systems. We describe the details of our model's architecture for TSR and suggest a hinge loss stochastic gradient descent (HLSGD) method to train convolutional neural networks (CNNs). Our CNN consists of three stages (70-110-180) with 1 162 284 trainable parameters. The HLSGD is evaluated on the German Traffic Sign Recognition Benchmark, which offers a faster and more stable convergence and a state-of-the-art recognition rate of 99.65%. We write a graphics processing unit package to train several CNNs and establish the final classifier in an ensemble way.
引用
收藏
页码:1991 / 2000
页数:10
相关论文
共 26 条
  • [1] [Anonymous], 2005, PROC CVPR IEEE
  • [2] Bouvrie J., 2006, Notes on convolutional neural networks
  • [3] Ciresan D.C., 2011, P 22 INT JOINT C ART, DOI [DOI 10.5591/978-1-57735-516-8/IJCAI11-210, DOI 10.5555/2283516.2283603]
  • [4] Ciresan D, 2012, PROC CVPR IEEE, P3642, DOI 10.1109/CVPR.2012.6248110
  • [5] Ciresan D, 2011, 2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), P1918, DOI 10.1109/IJCNN.2011.6033458
  • [7] Real-Time Detection and Recognition of Road Traffic Signs
    Greenhalgh, Jack
    Mirmehdi, Majid
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2012, 13 (04) : 1498 - 1506
  • [8] RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE OF MONKEY STRIATE CORTEX
    HUBEL, DH
    WIESEL, TN
    [J]. JOURNAL OF PHYSIOLOGY-LONDON, 1968, 195 (01): : 215 - &
  • [9] What is the Best Multi-Stage Architecture for Object Recognition?
    Jarrett, Kevin
    Kavukcuoglu, Koray
    Ranzato, Marc'Aurelio
    LeCun, Yann
    [J]. 2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 2146 - 2153
  • [10] ImageNet Classification with Deep Convolutional Neural Networks
    Krizhevsky, Alex
    Sutskever, Ilya
    Hinton, Geoffrey E.
    [J]. COMMUNICATIONS OF THE ACM, 2017, 60 (06) : 84 - 90