Traffic Sign Recognition With Hinge Loss Trained Convolutional Neural Networks

被引:218
作者
Jin, Junqi [1 ]
Fu, Kun [1 ]
Zhang, Changshui [1 ]
机构
[1] Tsinghua Univ, Tsinghua Natl Lab Informat Sci & Technol, State Key Lab Intelligent Technol & Syst, Dept Automat, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolutional neural networks (CNNs); hinge loss; stochastic gradient descent (SGD); traffic sign recognition (TSR);
D O I
10.1109/TITS.2014.2308281
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Traffic sign recognition (TSR) is an important and challenging task for intelligent transportation systems. We describe the details of our model's architecture for TSR and suggest a hinge loss stochastic gradient descent (HLSGD) method to train convolutional neural networks (CNNs). Our CNN consists of three stages (70-110-180) with 1 162 284 trainable parameters. The HLSGD is evaluated on the German Traffic Sign Recognition Benchmark, which offers a faster and more stable convergence and a state-of-the-art recognition rate of 99.65%. We write a graphics processing unit package to train several CNNs and establish the final classifier in an ensemble way.
引用
收藏
页码:1991 / 2000
页数:10
相关论文
共 26 条
[11]  
Le QV, 2013, INT CONF ACOUST SPEE, P8595, DOI 10.1109/ICASSP.2013.6639343
[12]   Efficient backprop [J].
LeCun, Y ;
Bottou, L ;
Orr, GB ;
Müller, KR .
NEURAL NETWORKS: TRICKS OF THE TRADE, 1998, 1524 :9-50
[13]   Gradient-based learning applied to document recognition [J].
Lecun, Y ;
Bottou, L ;
Bengio, Y ;
Haffner, P .
PROCEEDINGS OF THE IEEE, 1998, 86 (11) :2278-2324
[14]   Distinctive image features from scale-invariant keypoints [J].
Lowe, DG .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 60 (02) :91-110
[15]   A Decision Fusion and Reasoning Module for a Traffic Sign Recognition System [J].
Meuter, Mirko ;
Nunn, Christian ;
Goermer, Steffen Michael ;
Mueller-Schneiders, Stefan ;
Kummert, Anton .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2011, 12 (04) :1126-1134
[16]   Vision-Based Traffic Sign Detection and Analysis for Intelligent Driver Assistance Systems: Perspectives and Survey [J].
Mogelmose, Andreas ;
Trivedi, Mohan Manubhai ;
Moeslund, Thomas B. .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2012, 13 (04) :1484-1497
[17]   Emergence of simple-cell receptive field properties by learning a sparse code for natural images [J].
Olshausen, BA ;
Field, DJ .
NATURE, 1996, 381 (6583) :607-609
[18]   Robust Class Similarity Measure for Traffic Sign Recognition [J].
Ruta, Andrzej ;
Li, Yongmin ;
Liu, Xiaohui .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2010, 11 (04) :846-855
[19]  
Scherer D, 2010, LECT NOTES COMPUT SC, V6354, P92, DOI 10.1007/978-3-642-15825-4_10
[20]  
Sermanet P, 2011, 2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), P2809, DOI 10.1109/IJCNN.2011.6033589