Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth

被引:364
作者
Lu, WG [1 ]
Yamamoto, V [1 ]
Ortega, B [1 ]
Baltimore, D [1 ]
机构
[1] CALTECH, Div Biol, Pasadena, CA 91125 USA
关键词
D O I
10.1016/j.cell.2004.09.019
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Ryk receptor belongs to the atypical receptor tyrosine kinase family. It is a new member of the family of Wnt receptor proteins. However, the molecular mechanisms by which the Ryk receptor functions remain unknown. Here, we report that mammalian Ryk, unlike the Drosophila Ryk homolog Derailed, functions as a coreceptor along with Frizzled for Wnt ligands. Ryk also binds to Dishevelled, through which it activates the canonical Writ pathway, providing a link between Wnt and Dishevelled. Transgenic mice expressing Ryk siRNA exhibit defects in axon guidance, and Ryk is required for neurite outgrowth induced by Wnt-3a and in the activation of T cell factor (TCF) induced by Wnt-1. Thus, Ryk appears to play a crucial role in Wnt-mediated signaling.
引用
收藏
页码:97 / 108
页数:12
相关论文
共 58 条
[1]   beta-catenin is a target for the ubiquitin-proteasome pathway [J].
Aberle, H ;
Bauer, A ;
Stappert, J ;
Kispert, A ;
Kemler, R .
EMBO JOURNAL, 1997, 16 (13) :3797-3804
[2]   Functional interaction of beta-catenin with the transcription factor LEF-1 [J].
Behrens, J ;
vonKries, JP ;
Kuhl, M ;
Bruhn, L ;
Wedlich, D ;
Grosschedl, R ;
Birchmeier, W .
NATURE, 1996, 382 (6592) :638-642
[3]   A new member of the frizzled family from Drosophila functions as a Wingless receptor [J].
Bhanot, P ;
Brink, M ;
Samos, CH ;
Hsieh, JC ;
Wang, YS ;
Macke, JP ;
Andrew, D ;
Nathans, J ;
Nusse, R .
NATURE, 1996, 382 (6588) :225-230
[4]   Axon routing across the midline controlled by the Drosophila Derailed receptor [J].
Bonkowsky, JL ;
Yoshikawa, S ;
O'Keefe, DD ;
Scully, AL ;
Thomas, JB .
NATURE, 1999, 402 (6761) :540-544
[5]   A system for stable expression of short interfering RNAs in mammalian cells [J].
Brummelkamp, TR ;
Bernards, R ;
Agami, R .
SCIENCE, 2002, 296 (5567) :550-553
[6]   Wnt signaling: a common theme in animal development [J].
Cadigan, KM ;
Nusse, R .
GENES & DEVELOPMENT, 1997, 11 (24) :3286-3305
[7]   CONTROL OF NEURONAL PATHWAY SELECTION BY A DROSOPHILA RECEPTOR PROTEIN-TYROSINE KINASE FAMILY MEMBER [J].
CALLAHAN, CA ;
MURALIDHAR, MG ;
LUNDGREN, SE ;
SCULLY, AL ;
THOMAS, JB .
NATURE, 1995, 376 (6536) :171-174
[8]   Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a [J].
Castelo-Branco, GA ;
Wagner, J ;
Rodriguez, FJ ;
Kele, J ;
Sousa, K ;
Rawal, N ;
Pasolli, HA ;
Fuchs, E ;
Kitajewski, J ;
Arenas, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (22) :12747-12752
[9]   Increased neuronal production, enlarged forebrains and cytoarchitectural distortions in β-catenin overexpressing transgenic mice [J].
Chenn, A ;
Walsh, CA .
CEREBRAL CORTEX, 2003, 13 (06) :599-606
[10]   THE DROSOPHILA LEARNING AND MEMORY GENE LINOTTE ENCODES A PUTATIVE RECEPTOR TYROSINE KINASE HOMOLOGOUS TO THE HUMAN RYK GENE-PRODUCT [J].
DURA, JM ;
TAILLEBOURG, E ;
PREAT, T .
FEBS LETTERS, 1995, 370 (03) :250-254