A proof of the Melvin-Morton conjecture and Feynman diagrams

被引:8
作者
Chmutov, S [1 ]
机构
[1] Program Syst Inst, Pereslavl Zalessky 152140, Russia
关键词
Melvin-Morton conjecture; Vassiliev knot invariants;
D O I
10.1142/S0218216598000036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Melvin-Morton conjecture says how the Alexander-Conway knot invariant function can be read from the coloured Jones function. It has been proved by D. Bar-Natan and S. Garoufalidis. They reduced the conjecture to a statement about weight systems. The proof of the latter is the most difficult part of their paper. We give a new proof of the statement based on the Feynman diagram description of the primitive space of the Hopf algebra A of chord diagrams.
引用
收藏
页码:23 / 40
页数:18
相关论文
共 20 条
[1]  
[Anonymous], ADV SOV MATH
[2]  
[Anonymous], 1971, COMBINATORIAL MATH I
[3]   On the Melvin-Morton-Rozansky conjecture [J].
BarNatan, D ;
Garoufalidis, S .
INVENTIONES MATHEMATICAE, 1996, 125 (01) :103-133
[4]   ON THE VASSILIEV KNOT INVARIANTS [J].
BARNATAN, D .
TOPOLOGY, 1995, 34 (02) :423-472
[5]  
BARNATAN D, 1994, SOME COMPUTATIONS RE
[6]   KNOT POLYNOMIALS AND VASSILIEV INVARIANTS [J].
BIRMAN, JS ;
LIN, XS .
INVENTIONES MATHEMATICAE, 1993, 111 (02) :225-270
[7]  
Chmutov S. V., 1994, ADV SOVIET MATH, V21, P127
[8]   Remarks on the Vassiliev knot invariants coming from sl(2) [J].
Chmutov, SV ;
Varchenko, AN .
TOPOLOGY, 1997, 36 (01) :153-178
[9]  
GUSAROV M, 1995, COMMUNICATION SEP
[10]  
Kassel Ch., 1995, QUANTUM GROUPS