Lattice gauge fields and noncommutative geometry

被引:10
作者
Balachandran, AP
Bimonte, G
Landi, G
Lizzi, F
Teotonio-Sobrinho, P
机构
[1] Univ Trieste, Dipartimento Sci Matemat, I-34127 Trieste, Italy
[2] E Schrodinger Int Inst Math Phys, A-1090 Vienna, Austria
[3] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
[4] Univ Zaragoza, Fac Ciencias, Dept Fis Teor, E-50009 Zaragoza, Spain
[5] Ist Nazl Fis Nucl, I-80125 Naples, Italy
[6] Univ Naples Federico II, Dipartimento Sci Fis, I-80125 Naples, Italy
[7] Univ Illinois, Dept Phys, Chicago, IL 60607 USA
关键词
lattice gauge theory; geometry and topology of complexes; noncommutative geometry; topological actions; Chern-Simons terms;
D O I
10.1016/S0393-0440(97)00017-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Conventional approaches to lattice gauge theories do not properly consider the topology of spacetime or of its fields, In this paper, we develop a formulation which tries to remedy this defect. It starts from a cubical decomposition of the supporting manifold (compactified space-time or spatial slice) interpreting it as a finite topological approximation in the sense of Sorkin. This finite space is entirely described by the algebra of cochains with the cup product. The methods of Connes and Lott are then used to develop gauge theories on this algebra and to derive Wilson's actions for the gauge and Dirac fields therefrom which can now be given geometrical meaning. We also describe very natural candidates for the QCD theta-term and Chern-Simons action suggested by this algebraic formulation, Some of these formulations are simpler than currently available alternatives. The paper treats both the functional integral and Hamiltonian approaches.
引用
收藏
页码:353 / 385
页数:33
相关论文
共 46 条
[1]  
ALEKSANDROV PS, 1960, COMBINATORIAL TOPOLO, V1
[2]  
[Anonymous], 1978, HOMOLOGY COHOMOLOGY
[3]   TOPOLOGY CHANGE AND QUANTUM PHYSICS [J].
BALACHANDRAN, AP ;
BIMONTE, G ;
MARMO, G ;
SIMONI, A .
NUCLEAR PHYSICS B, 1995, 446 (1-2) :299-314
[4]   FINITE APPROXIMATIONS TO QUANTUM PHYSICS - QUANTUM POINTS AND THEIR BUNDLES [J].
BALACHANDRAN, AP ;
BIMONTE, G ;
ERCOLESSI, E ;
TEOTONIOSOBRINHO, P .
NUCLEAR PHYSICS B, 1994, 418 (03) :477-493
[5]   Noncommutative lattices as finite approximations [J].
Balachandran, AP ;
Bimonte, G ;
Ercolessi, E ;
Landi, G ;
Lizzi, F ;
Sparano, G ;
TeotonioSobrinho, P .
JOURNAL OF GEOMETRY AND PHYSICS, 1996, 18 (02) :163-194
[6]   FINITE QUANTUM PHYSICS AND NONCOMMUTATIVE GEOMETRY [J].
BALACHANDRAN, AP ;
BIMONTE, G ;
ERCOLESSI, E ;
LANDI, G ;
LIZZI, F ;
SPARANO, G ;
TEOTONIOSOBRINHO, P .
NUCLEAR PHYSICS B, 1995, :20-45
[7]   Noncommutative lattices and their continuum limits [J].
Bimonte, G ;
Ercolessi, E ;
Landi, G ;
Lizzi, F ;
Sparano, G ;
TeotonioSobrinho, P .
JOURNAL OF GEOMETRY AND PHYSICS, 1996, 20 (04) :329-348
[8]  
Bimonte G, 1996, J GEOM PHYS, V20, P318, DOI 10.1016/S0393-0440(95)00063-1
[9]   A STAR PRODUCT IN LATTICE GAUGE-THEORY [J].
BIRMINGHAM, D ;
RAKOWSKI, M .
PHYSICS LETTERS B, 1993, 299 (3-4) :299-304
[10]   SPACE-TIME AS A CAUSAL SET [J].
BOMBELLI, L ;
LEE, J ;
MEYER, D ;
SORKIN, RD .
PHYSICAL REVIEW LETTERS, 1987, 59 (05) :521-524