Femoral rollback after cruciate-retaining and stabilizing total knee arthroplasty

被引:61
作者
Most, E
Zayontz, S
Li, GA
Otterberg, E
Sabbag, K
Rubash, HE
机构
[1] Massachusetts Gen Hosp, Orthoped Biomech Lab, Boston, MA 02114 USA
[2] Beth Israel Deaconess Med Ctr, Boston, MA 02215 USA
[3] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
关键词
D O I
10.1097/01.blo.0000062380.79828.2e
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Limited data comparing the kinematics of posterior cruciate ligament-retaining or substituting total knee arthroplasty with its own intact knee under identical loadings is available. In the current study, posterior femoral translation of the lateral and medial femoral condyles under unloaded conditions was examined for intact, cruciate-retaining, cruciate ligament-deficient cruciate-retaining and posterior-substituting knee arthroplasties. Cruciate-retaining and substituting total knee arthroplasties behaved similarly to the cruciate-deficient cruciate-retaining total knee arthroplasty between 0degrees and 30degrees flexion. Beyond 30degrees, the posterior cruciate-retaining arthroplasty showed a significant increase in posterior translation of both femoral condyles. The posterior cruciate-substituting arthroplasty only showed a significant increase in posterior femoral translation after 90degrees. At 120degrees, both arthroplasties restored approximately 80% of that of the native knee. Posterior translation of the lateral femoral condyle was greater than that observed in the medial condyle for all knees, indicating the presence of internal tibial rotation during knee flexion. The data showed that the posterior cruciate ligament is an important structure in posterior cruciate-retaining total knee arthroplasty and proper balancing is imperative to the success of the implant. The camspine engagement is valuable in restoring posterior femoral translation in posterior cruciate-substituting total knee arthroplasty.
引用
收藏
页码:101 / 113
页数:13
相关论文
共 34 条
[1]   A Point Cluster Method for In Vivo Motion Analysis: Applied to a Study of Knee Kinematics [J].
Andriacchi, TP ;
Alexander, EJ ;
Toney, MK ;
Dyrby, C .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1998, 120 (06) :743-749
[2]  
ANDRIACCHI TP, 1988, J ARTHROPLASTY S, V3, P13
[3]   In vivo kinematics of cruciate-retaining and -substituting knee arthroplasties [J].
Banks, SA ;
Markovich, GD ;
Hodge, WA .
JOURNAL OF ARTHROPLASTY, 1997, 12 (03) :297-304
[4]  
BANKS SA, 1995, P 19 ANN M AM SOC BI, P163
[5]   Clinical outcome of arthroscopic repair of the posterior cruciate ligament [J].
Becker, R ;
Röpke, M ;
Nebelung, W .
UNFALLCHIRURG, 1999, 102 (05) :354-358
[6]   A comparison of isokinetic strength testing and gait analysis in patients with posterior cruciate-retaining and substituting knee arthroplasties [J].
Bolanos, AA ;
Colizza, WA ;
McCann, PD ;
Gotlin, RS ;
Wootten, ME ;
Kahn, BA ;
Insall, JN .
JOURNAL OF ARTHROPLASTY, 1998, 13 (08) :906-915
[8]   TRADEOFFS BETWEEN MOTION AND STABILITY IN POSTERIOR SUBSTITUTING KNEE ARTHROPLASTY DESIGN [J].
DELP, SL ;
KOCMOND, JH ;
STERN, SH .
JOURNAL OF BIOMECHANICS, 1995, 28 (10) :1155-&
[9]  
Dennis DA, 1998, CLIN ORTHOP RELAT R, P47
[10]   Range of motion after total knee arthroplasty - The effect of implant design and weight-bearing conditions [J].
Dennis, DA ;
Komistek, RD ;
Stiehl, JB ;
Walker, SA ;
Dennis, KN .
JOURNAL OF ARTHROPLASTY, 1998, 13 (07) :748-752