The Schwarz criterion and related methods for normal linear models

被引:85
作者
Pauler, DK [1 ]
机构
[1] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
基金
美国国家科学基金会; 美国安德鲁·梅隆基金会;
关键词
Bayes factor; mixed effects model; nested hypotheses; regression; unit-information;
D O I
10.1093/biomet/85.1.13
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we derive Schwarz's information criterion and two modifications for choosing fixed effects in normal linear mixed models. The first modification allows an arbitrary, possibly informative, prior for the parameter of interest. Replacing this prior with the normal, unit-information, prior of Kass & Wasserman (1995) and; the generalised Cauchy prior of Jeffreys (1961) yields the usual Schwarz criterion and a second modification, respectively. Under the null hypothesis, these criteria approximate Bayes factors using the corresponding priors to increased accuracy. In regression, the second modification also corresponds asymptotically to the Bayes factors of Zellner & Slow (1980) and O'Hagan (1995), and is similar to the Bayes factor of Berger & Pericchi (1996). In mixed models, the effective sample size term in Schwarz's formula is ambiguous because of correlation between observations. We propose an appropriate generalisation of Schwarz's approximation and apply our results to evaluate a large class of models for repeated neuron area measurements in alcoholic and suicidal patients.
引用
收藏
页码:13 / 27
页数:15
相关论文
共 34 条
[1]   The intrinsic Bayes factor for model selection and prediction [J].
Berger, JO ;
Pericchi, LR .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (433) :109-122
[2]  
Box GE., 2011, BAYESIAN INFERENCE S
[3]  
CHEN CF, 1985, J ROY STAT SOC B MET, V47, P540
[4]   Marginal likelihood from the Gibbs output [J].
Chib, S .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (432) :1313-1321
[5]   THE ASYMPTOTIC-DISTRIBUTION OF REML ESTIMATORS [J].
CRESSIE, N ;
LAHIRI, SN .
JOURNAL OF MULTIVARIATE ANALYSIS, 1993, 45 (02) :217-233
[6]   Computing Bayes factors by combining simulation and asymptotic approximations [J].
DiCiccio, TJ ;
Kass, RE ;
Raftery, A ;
Wasserman, L .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (439) :903-915
[7]  
DIXON WJ, 1990, BMDP STAT SOFTWARE M, V2
[9]  
GELFAND AE, 1994, J ROY STAT SOC B MET, V56, P501
[10]   VARIABLE SELECTION VIA GIBBS SAMPLING [J].
GEORGE, EI ;
MCCULLOCH, RE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (423) :881-889