Tensor product of principal unitary representations of quantum Lorentz group and Askey-Wilson polynomials

被引:10
作者
Buffenoir, E
Roche, P
机构
[1] Univ Montpellier 2, Lab Phys Math & Theor, CNRS, UMR 5825, F-34000 Montpellier, France
[2] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
D O I
10.1063/1.1289828
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the tensor product of principal unitary representations of the quantum Lorentz group, prove a decomposition theorem, and compute the associated intertwiners. We show that these intertwiners can be expressed in terms of complex continuations of 6j symbols of U-q(su(2)). These intertwiners are expressed in terms of q-Racah polynomials and Askey-Wilson polynomials. The orthogonality of these intertwiners imply some relation mixing these two families of polynomials. The simplest of these relations is the orthogonality of Askey-Wilson polynomials. (C) 2000 American Institute of Physics. [S0022-2488(00)02010-7].
引用
收藏
页码:7715 / 7751
页数:37
相关论文
共 25 条
[1]  
ANDERSON RL, 1970, J MATH PHYS, V11
[2]  
[Anonymous], MEM AM MATH SOC
[3]   A quasi-Hopf algebra interpretation of quantum 3-j and 6-j symbols and difference equations [J].
Babelon, O ;
Bernard, D ;
Billey, E .
PHYSICS LETTERS B, 1996, 375 (1-4) :89-97
[4]   Harmonic analysis on the Quantum Lorentz Group [J].
Buffenoir, E ;
Roche, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 207 (03) :499-555
[5]  
BUFFENOIR E, UNPUB 6J SYMBOLS PRI
[6]  
BUFFENOIR E, QALG9710022
[7]   Remarks on quantum integration [J].
Chryssomalakos, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 184 (01) :1-25
[8]   THE QUANTUM GROUP-STRUCTURE OF 2D GRAVITY AND MINIMAL MODELS .2. THE GENUS-ZERO CHIRAL BOOTSTRAP [J].
CREMMER, E ;
GERVAIS, JL ;
ROUSSEL, JF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 161 (03) :597-630
[9]   Exchange dynamical quantum groups [J].
Etingof, P ;
Varchenko, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 205 (01) :19-52
[10]  
ETINGOF P, QALG9801135