GM-CSF-secreting melanoma vaccines

被引:136
作者
Dranoff, G
机构
[1] Dana Farber Canc Inst, Dept Adult Oncol, Boston, MA 02115 USA
[2] Brigham & Womens Hosp, Dept Med, Boston, MA 02115 USA
[3] Harvard Univ, Sch Med, Boston, MA 02115 USA
关键词
GM-CSF; melanoma; cancer vaccine; tumor antigen;
D O I
10.1038/sj.onc.1206459
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The development of biochemical and genetic schemes to characterize cancer antigens led to the recognition that malignant melanoma frequently evokes a host response. While the generation of brisk T-cell infiltrates in early stage disease is correlated with prolonged survival, host reactions in most cases are insufficient to impede tumor progression. One variable that may limit the potency of the host response against nascent melanoma is the mixture of cytokines present in the tumor microenvironment. In a murine melanoma model, we identified granulocyte-macrophage colony stimulating factor (GM-CSF) as the most potent molecule for augmenting tumor immunity following gene transfer into melanoma cells. Vaccination with irradiated melanoma cells engineered to secrete GMCSF enhances host responses through improved tumor antigen presentation by recruited dendritic cells and macrophages. Melanoma-specific CD4(+) and CD8(+) T-cells, CD1d-restricted NKT-cells, and antibodies mediate tumor rejection. Initial testing of this immunization strategy in patients with metastatic melanoma revealed the consistent induction of cellular and humoral antitumor responses that provoked the extensive necrosis of distant metastases without significant toxicity.
引用
收藏
页码:3188 / 3192
页数:5
相关论文
共 54 条
[1]   Immunobiology of dendritic cells [J].
Banchereau, J ;
Briere, F ;
Caux, C ;
Davoust, J ;
Lebecque, S ;
Liu, YT ;
Pulendran, B ;
Palucka, K .
ANNUAL REVIEW OF IMMUNOLOGY, 2000, 18 :767-+
[2]   Dendritic cells and the control of immunity [J].
Banchereau, J ;
Steinman, RM .
NATURE, 1998, 392 (6673) :245-252
[3]   Activation of NK Cells and T Cells by NKG2D, a Receptor for Stress-Inducible MICA [J].
Bauer, Stefan ;
Groh, Veronika ;
Wu, Jun ;
Steinle, Alexander ;
Phillips, Joseph H. ;
Lanier, Lewis L. ;
Spies, Thomas .
JOURNAL OF IMMUNOLOGY, 2018, 200 (07) :2231-2233
[4]   Mouse CD1-specific NK1 T cells: Development, specificity, and function [J].
Bendelac, A ;
Rivera, MN ;
Park, SH ;
Roark, JH .
ANNUAL REVIEW OF IMMUNOLOGY, 1997, 15 :535-562
[5]  
BERKNER KL, 1988, BIOTECHNIQUES, V6, P616
[6]  
BOON T, 1994, ANNU REV IMMUNOL, V12, P337, DOI 10.1146/annurev.iy.12.040194.002005
[7]   Human tumor antigens recognized by T lymphocytes [J].
Boon, T ;
vanderBruggen, P .
JOURNAL OF EXPERIMENTAL MEDICINE, 1996, 183 (03) :725-729
[8]   CTLA-4-mediated inhibition in regulation of T cell responses: Mechanisms and manipulation in tumor immunotherapy [J].
Chambers, CA ;
Kuhns, MS ;
Egen, JG ;
Allison, JP .
ANNUAL REVIEW OF IMMUNOLOGY, 2001, 19 :565-594
[9]   MODEL PREDICTING SURVIVAL IN STAGE-I MELANOMA BASED ON TUMOR PROGRESSION [J].
CLARK, WH ;
ELDER, DE ;
GUERRY, D ;
BRAITMAN, LE ;
TROCK, BJ ;
SCHULTZ, D ;
SYNNESTVEDT, M ;
HALPERN, AC .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 1989, 81 (24) :1893-1904
[10]  
Clemente CG, 1996, CANCER, V77, P1303, DOI 10.1002/(SICI)1097-0142(19960401)77:7<1303::AID-CNCR12>3.0.CO