Cytosolic internalization is a requirement for the toxicity of secretory ribonucleases. Here, we investigate the mechanism of internalization of Onconase((R)) (ONC), a toxic protein, and ribonuclease A (RNase A), a nontoxic homolog. Microscopy studies indicate that both ribonucleases readily bind to the cell surface and are internalized via acidic vesicles. Blocking dynamin-dependent endocytosis prevents transferrin internalization but does not hinder RNase A internalization. ONC and G88R RNase A, which is a toxic variant, demonstrate enhanced cytotoxicity in the absence of clathrin- and dynamin-mediated endocytosis. The cytosolic entry of ribonucleases does not require an acidic environment or transport to the ER and probably occurs from endosomes. Thus, common proteins - secretory ribonucleases - enter the cytosol by a pathway that is distinct from that of other known toxins.