Genomewide analysis of Drosophila GAGA factor target genes reveals context-dependent DNA binding

被引:100
作者
van Steensel, B [1 ]
Delrow, J
Bussemaker, HJ
机构
[1] Columbia Univ, Dept Sci Biol, New York, NY 10027 USA
[2] Columbia Univ, Ctr Computat Biol & Bioinformat, New York, NY 10027 USA
[3] Netherlands Canc Inst, NL-1066 CX Amsterdam, Netherlands
[4] Fred Hutchinson Canc Res Ctr, DNA Array Facil, Seattle, WA 98109 USA
[5] Univ Amsterdam, Swammerdam Inst Life Sci, NL-1018 TV Amsterdam, Netherlands
关键词
D O I
10.1073/pnas.0438000100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The association of sequence-specific DNA-binding factors with their cognate target sequences in vivo depends on the local molecular context, yet this context is poorly understood. To address this issue, we have performed genomewide mapping of in vivo target genes of Drosophila GAGA factor (GAF). The resulting list of approximate to250 target genes indicates that GAF regulates many cellular pathways. We applied unbiased motif-based regression analysis to identify the sequence context that determines GAF binding. Our results confirm that GAF selectively associates with (GA)(n) repeat elements in vivo. GAF binding occurs in upstream regulatory regions, but less in downstream regions. Surprisingly, GAF binds abundantly to introns but is virtually absent from exons, even though the density of (GA)(n) is roughly the same. Intron binding occurs equally frequently in last introns compared with first introns, suggesting that GAF may not only regulate transcription initiation, but possibly also elongation. We provide evidence for cooperative binding of GAF to closely spaced (GA)(n) elements and explain the lack of GAF binding to exons by the absence of such closely spaced GA repeats. Our approach for revealing determinants of context-dependent DNA binding will be applicable to many other transcription factors.
引用
收藏
页码:2580 / 2585
页数:6
相关论文
共 28 条
[1]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[2]   Multiple isoforms of GAGA factor, a critical component of chromatin structure [J].
Benyajati, C ;
Mueller, L ;
Xu, N ;
Pappano, M ;
Gao, J ;
Mosammaparast, M ;
Conklin, D ;
Granok, H ;
Craig, C ;
Elgin, S .
NUCLEIC ACIDS RESEARCH, 1997, 25 (16) :3345-3353
[3]  
Bhat KM, 1996, DEVELOPMENT, V122, P1113
[4]   To bind or note to bind [J].
Biggin, MD .
NATURE GENETICS, 2001, 28 (04) :303-304
[5]   Regulatory element detection using correlation with expression [J].
Bussemaker, HJ ;
Li, H ;
Siggia, ED .
NATURE GENETICS, 2001, 27 (02) :167-171
[6]   SEQUENCE-SPECIFIC ANTIREPRESSION OF HISTONE HL-MEDIATED INHIBITION OF BASAL RNA POLYMERASE-II TRANSCRIPTION [J].
CROSTON, GE ;
KERRIGAN, LA ;
LIRA, LM ;
MARSHAK, DR ;
KADONAGA, JT .
SCIENCE, 1991, 251 (4994) :643-649
[7]   The N-terminal POZ domain of GAGA mediates the formation of oligomers that bind DNA with high affinity and specificity [J].
Espinás, ML ;
Jiménez-García, E ;
Vaquero, A ;
Canudas, S ;
Bernués, J ;
Azorín, F .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (23) :16461-16469
[8]   THE TRITHORAX-LIKE GENE ENCODES THE DROSOPHILA GAGA FACTOR [J].
FARKAS, G ;
GAUSZ, J ;
GALLONI, M ;
REUTER, G ;
GYURKOVICS, H ;
KARCH, F .
NATURE, 1994, 371 (6500) :806-808
[9]   CHROMATIN - GA-GA OVER GAGA FACTOR [J].
GRANOK, H ;
LEIBOVITCH, BA ;
SHAFFER, CD ;
ELGIN, SCR .
CURRENT BIOLOGY, 1995, 5 (03) :238-241
[10]  
Hagstrom K, 1997, GENETICS, V146, P1365