Investigation of the use of radial basis functions in local collocation method for solving diffusion problems

被引:16
作者
Chantasiriwan, S [1 ]
机构
[1] Thammasat Univ, Fac Engn, Pathum Thani 12121, Thailand
关键词
D O I
10.1016/j.icheatmasstransfer.2004.08.007
中图分类号
O414.1 [热力学];
学科分类号
摘要
Multidimensional diffusion problems can be solved by a local collocation method using radial basis functions. This method is computation ally efficient because it is meshless and yields a sparse system of algebraic equations. Three types of radial basis functions - the generalized multiquadric function, the Gaussian function, and the generalized thin-plate spline function - are considered as interpolation functions in this method. Analysis of truncation error indicates that the use of the generalized multiquadric function or the Gaussian function produces satisfactory results, but the generalized thin-plate spline function is not a good interpolation function. (C) 2004 Elsevier Science Ltd.
引用
收藏
页码:1095 / 1104
页数:10
相关论文
共 19 条
[1]  
Agnantiaris JP, 1996, COMPUT MECH, V17, P270
[2]   A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics [J].
Atluri, SN ;
Zhu, T .
COMPUTATIONAL MECHANICS, 1998, 22 (02) :117-127
[3]   ELEMENT-FREE GALERKIN METHODS [J].
BELYTSCHKO, T ;
LU, YY ;
GU, L .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1994, 37 (02) :229-256
[4]  
Bert C.W., 1996, APPL MECH REV, V49, P1, DOI DOI 10.1115/1.3101882
[5]   THE PARAMETER R2 IN MULTIQUADRIC INTERPOLATION [J].
CARLSON, RE ;
FOLEY, TA .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1991, 21 (09) :29-42
[6]   Numerical investigation on convergence of boundary knot method in the analysis of homogeneous Helmholtz, modified Helmholtz, and convection-diffusion problems [J].
Chen, W ;
Hon, YC .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2003, 192 (15) :1859-1875
[7]   SCATTERED DATA INTERPOLATION - TESTS OF SOME METHODS [J].
FRANKE, R .
MATHEMATICS OF COMPUTATION, 1982, 38 (157) :181-200
[8]  
GOLDBERG MA, 1995, ENG ANAL BOUNDARY EL, V16, P205
[9]   MULTIQUADRIC EQUATIONS OF TOPOGRAPHY AND OTHER IRREGULAR SURFACES [J].
HARDY, RL .
JOURNAL OF GEOPHYSICAL RESEARCH, 1971, 76 (08) :1905-+
[10]   IMPROVED ACCURACY OF MULTIQUADRIC INTERPOLATION USING VARIABLE SHAPE-PARAMETERS [J].
KANSA, EJ ;
CARLSON, RE .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1992, 24 (12) :99-120