IMPROVED ACCURACY OF MULTIQUADRIC INTERPOLATION USING VARIABLE SHAPE-PARAMETERS

被引:135
作者
KANSA, EJ
CARLSON, RE
机构
[1] Lawrence Livermore National Laboratory, Livermore, CA 94550
关键词
D O I
10.1016/0898-1221(92)90174-G
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given N scattered data points, we examined the problem of finding N variable Multiquadric (MQ) shape-parameters, or R2 values. Because the problem of funding the optimal R2 values is a nonlinear one, we optimized these parameters numerically by minimizing the root-mean-square (RMS) errors. The resulting R2 values varied over many orders of magnitude. We have tested this approach on a number of univariate and bivariate (Franke's) problems, and found that the RMS error reduction was substantial.
引用
收藏
页码:99 / 120
页数:22
相关论文
共 14 条
[1]   THE PARAMETER R2 IN MULTIQUADRIC INTERPOLATION [J].
CARLSON, RE ;
FOLEY, TA .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1991, 21 (09) :29-42
[2]   SCATTERED DATA INTERPOLATION - TESTS OF SOME METHODS [J].
FRANKE, R .
MATHEMATICS OF COMPUTATION, 1982, 38 (157) :181-200
[3]  
Goldberg DE, 1989, GENETIC ALGORITHMS S
[4]   MULTIQUADRIC EQUATIONS OF TOPOGRAPHY AND OTHER IRREGULAR SURFACES [J].
HARDY, RL .
JOURNAL OF GEOPHYSICAL RESEARCH, 1971, 76 (08) :1905-+
[7]   IMPROVED ACCURACY OF MULTIQUADRIC INTERPOLATION USING VARIABLE SHAPE-PARAMETERS [J].
KANSA, EJ ;
CARLSON, RE .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1992, 24 (12) :99-120
[8]   NORMS OF INVERSES AND CONDITION NUMBERS FOR MATRICES ASSOCIATED WITH SCATTERED DATA [J].
NARCOWICH, FJ ;
WARD, JD .
JOURNAL OF APPROXIMATION THEORY, 1991, 64 (01) :69-94
[9]  
NIELSON GM, 1987, TOPICS MULTIVARIATE, P175
[10]  
OTTEN JHJ, 1989, ANNEALING ALGORITHM