On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes

被引:1151
作者
Werder, T [1 ]
Walther, JH
Jaffe, RL
Halicioglu, T
Koumoutsakos, P
机构
[1] Swiss Fed Inst Technol, Inst Computat Sci, CH-8092 Zurich, Switzerland
[2] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
[3] Eloret Corp, Sunnyvale, CA 94086 USA
关键词
D O I
10.1021/jp0268112
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A systematic molecular dynamics study shows that the contact angle of a water droplet on graphite changes significantly as a function of the water-carbon interaction energy. Together with the observation that a linear relationship can be established between the contact angle and the water monomer binding energy on graphite, a new route to calibrate interaction potential parameters is presented. Through a variation of the droplet size in the range from 1000 to 17 500 water molecules, we determine the line tension to be positive and on the order of 2x10(-10) J/m. To recover a macroscopic contact angle of 86degrees, a water monomer binding energy of -6.33 kJ mol(-1) is required, which is obtained by applying a carbon-oxygen Lennard-Jones potential with the parameters epsilon(CO)=0.392 kJ mol(-1) and sigma(CO)=3.19 Angstrom. For this new water-carbon interaction potential, we present density profiles and hydrogen bond distributions for a water droplet on graphite.
引用
收藏
页码:1345 / 1352
页数:8
相关论文
共 57 条
[31]   A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions [J].
Mahoney, MW ;
Jorgensen, WL .
JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (20) :8910-8922
[32]   Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K [J].
Mark, P ;
Nilsson, L .
JOURNAL OF PHYSICAL CHEMISTRY A, 2001, 105 (43) :9954-9960
[33]   Scattering of water from graphite:: simulations and experiments [J].
Markovic, N ;
Andersson, PU ;
Någård, MB ;
Pettersson, JBC .
CHEMICAL PHYSICS, 1999, 247 (03) :413-430
[34]   Molecular dynamics simulation of liquid water along the coexistence curve: Hydrogen bonds and vibrational spectra [J].
Marti, J ;
Padro, JA ;
Guardia, E .
JOURNAL OF CHEMICAL PHYSICS, 1996, 105 (02) :639-649
[35]   Analysis of the hydrogen bonding and vibrational spectra of supercritical model water by molecular dynamics simulations [J].
Martí, J .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (14) :6876-6886
[36]  
Martin R xEn xE, 1906, Cat Coll Selys Fasc, V17
[37]   Structural study of supercritical water .1. Nuclear magnetic resonance spectroscopy [J].
Matubayasi, N ;
Wakai, C ;
Nakahara, M .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (21) :9133-9140
[38]   SURFACE-TENSION OF STRESS-ANNEALED PYROLYTIC-GRAPHITE [J].
MORCOS, I .
JOURNAL OF CHEMICAL PHYSICS, 1972, 57 (04) :1801-&
[39]   Capillarity at the nanoscale: an AFM view [J].
Mugele, F ;
Becker, T ;
Nikopoulos, R ;
Kohonen, M ;
Herminghaus, S .
JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, 2002, 16 (07) :951-964
[40]   Simulation of activation free energies in molecular systems [J].
Neria, E ;
Fischer, S ;
Karplus, M .
JOURNAL OF CHEMICAL PHYSICS, 1996, 105 (05) :1902-1921