On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes

被引:205
作者
Qiu, JX [1 ]
Shu, CW
机构
[1] Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R China
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
WENO scheme; central scheme; high-order accuracy; local characteristic decomposition;
D O I
10.1006/jcph.2002.7191
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we review and construct fifth- and ninth-order central weighted essentially nonoscillatory (WENO) schemes based on a finite volume formulation, staggered mesh, and continuous extension of Runge-Kutta methods for solving nonlinear hyperbolic conservation law systems. Negative linear weights appear in such a formulation and they are treated using the technique recently introduced by Shi et al. (J. Comput. Phys. 175, 108 (2002)). We then perform numerical computations and comparisons with the finite difference WEND schemes of Jiang and Shu (J. Comput. Phys. 150, 97 (1999)) and Balsara and Shu (J. Comput. Phys. 160, 405 (2000)). The emphasis is on the performance with or without a local characteristic decomposition. While this decomposition increases the computational cost, we demonstrate by our numerical experiments that it is still necessary to use it to control spurious oscillations when the order of accuracy is high, both for the central staggered grid and for the upwind nonstaggered grid WEND schemes. We use the shock entropy wave interaction problem to demonstrate the advantage of using higher order WEND schemes when both shocks and complex solution features coexist. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:187 / 209
页数:23
相关论文
共 30 条
[1]  
ARMINJON P, 1995, CR ACAD SCI I-MATH, V320, P85
[2]  
Arminjon P, 1997, INT J COMPUT FLUID D, V9, P1
[3]   Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy [J].
Balsara, DS ;
Shu, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 160 (02) :405-452
[4]   High-order central schemes for hyperbolic systems of conservation laws [J].
Bianco, F ;
Puppo, G ;
Russo, G .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (01) :294-322
[5]  
HARTEN A, 1987, J COMPUT PHYS, V71, P231, DOI [10.1016/0021-9991(87)90031-3, 10.1006/jcph.1996.5632]
[6]   Weighted essentially non-oscillatory schemes on triangular meshes [J].
Hu, CQ ;
Shu, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 150 (01) :97-127
[7]   High-resolution nonoscillatory central schemes with nonstaggered grids for hyperbolic conservation laws [J].
Jiang, GS ;
Levy, D ;
Lin, CT ;
Osher, S ;
Tadmor, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2147-2168
[8]   Efficient implementation of weighted ENO schemes [J].
Jiang, GS ;
Shu, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 126 (01) :202-228
[9]   Nonoscillatory central schemes for multidimensional hyperbolic conservation laws [J].
Jiang, GS ;
Tadmor, E .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (06) :1892-1917
[10]   A third-order semidiscrete central scheme for conservation laws and convection-diffusion equations [J].
Kurganov, A ;
Levy, D .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (04) :1461-1488