Multiple Ca2+ Signaling Pathways Regulate Intracellular Ca2+ Activity in Human Cardiac Fibroblasts

被引:63
作者
Chen, Jing-Bo
Tao, Rong
Sun, Hai-Ying
Tse, Hung-Fat
Lau, Chu-Pak
Li, Gui-Rong [1 ,2 ]
机构
[1] Univ Hong Kong, Dept Med, Res Ctr Heart Brain Hormone & Healthy Aging, Li Ka Shing Fac Med,FMB, Pokfulam, Hong Kong, Peoples R China
[2] Univ Hong Kong, Dept Physiol, Li Ka Shing Fac Med, Pokfulam, Hong Kong, Peoples R China
关键词
MESENCHYMAL STEM-CELLS; CALCIUM OSCILLATIONS; CA-2+ OSCILLATIONS; ION CHANNELS; I-CA; PLASMA; FIBROSIS; ENTRY; THAPSIGARGIN; MITOCHONDRIA;
D O I
10.1002/jcp.22010
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Ca2+ signaling pathways are well studied in cardiac myocytes, but not in cardiac fibroblasts. The aim of the present study is to characterize Ca2+ signaling pathways in cultured human cardiac fibroblasts using confocal scanning microscope and RT-PCR techniques. It was found that spontaneous intracellular Ca2+ (Ca-i(2+)) oscillations were present in about 29% of human cardiac fibroblasts, and the number of cells with Ca-i(2+) oscillations was increased to 57.3% by application of 3% fetal bovine serum. Ca-i(2+). oscillations were dependent on Ca2+ entry. Ca-i(2+) oscillations were abolished by the store-operated Ca2+ (SOC) entry channel blocker La3+, the phospholipase C inhibitor U-73122, and the inositol trisphosphate receptors (IP3Rs) inhibitor 2-aminoethoxydiphenyl borate, but not by ryanodine. The IP3R agonist thimerosal enhanced Ca-i(2+) oscillations. Inhibition of plasma membrane Ca2+ pump (PMCA) and Na+-Ca2+ exchanger (NCX) also suppressed Ca-i(2+) oscillations. In addition, the frequency of Ca-i(2+) oscillations was reduced by nifedipine, and increased by Bay K8644 in cells with spontaneous Ca2+ oscillations. RT-PCR revealed that mRNAs for IP3R1-3, SERCA1-3, Ca(v)1.2, NCX3, PMCA1,3,4, TRPC1,3,4,6, STIM1, and Orai1-3, were readily detectable, but not RyRs. Our results demonstrate for the first time that spontaneous Ca-i(2+) oscillations are present in cultured human cardiac fibroblasts and are regulated by multiple Ca2+ pathways, which are not identical to those of the well-studied contractile cardiomyocytes. This study provides a base for future investigations into how Ca2+ signals regulate biological activity in human cardiac fibroblasts and cardiac remodeling under pathological conditions. J. Cell. Physiol. 223: 68-75, 2010. (C) 2009 Wiley-Liss, Inc.
引用
收藏
页码:68 / 75
页数:8
相关论文
共 49 条
[1]   Cardiac fibroblasts: friend or foe? [J].
Baudino, Troy A. ;
Carver, Wayne ;
Giles, Wayne ;
Borg, Thomas K. .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2006, 291 (03) :H1015-H1026
[2]   Calcium signalling: Dynamics, homeostasis and remodelling [J].
Berridge, MJ ;
Bootman, MD ;
Roderick, HL .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2003, 4 (07) :517-529
[3]   The versatility and universality of calcium signalling [J].
Berridge, MJ ;
Lipp, P ;
Bootman, MD .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2000, 1 (01) :11-21
[4]   Calcium signaling in cardiac ventricular myocytes [J].
Bers, DM ;
Guo, T .
COMMUNICATIVE CARDIAC CELL, 2005, 1047 :86-98
[5]  
BOOTMAN MD, 1992, J BIOL CHEM, V267, P25113
[6]   THE ELEMENTAL PRINCIPLES OF CALCIUM SIGNALING [J].
BOOTMAN, MD ;
BERRIDGE, MJ .
CELL, 1995, 83 (05) :675-678
[7]   The cardiac fibroblast: Therapeutic target in myocardial remodeling and failure [J].
Brown, RD ;
Ambler, SK ;
Mitchell, MD ;
Long, CS .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 2005, 45 :657-687
[8]   Calcium signaling in non-excitable cells:: Ca2+ release and influx are independent events linked to two plasma membrane Ca2+ entry channels [J].
Chakrabarti, Ranjana ;
Chakrabarti, Rabindranath .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2006, 99 (06) :1503-1516
[9]   Calcium, calcineurin, and the control of transcription [J].
Crabtree, GR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (04) :2313-2316
[10]   Calcium oscillations increase the efficiency and specificity of gene expression [J].
Dolmetsch, RE ;
Xu, KL ;
Lewis, RS .
NATURE, 1998, 392 (6679) :933-936