Graphene in perovskite solar cells: device design, characterization and implementation

被引:168
作者
Acik, Muge [1 ]
Darling, Seth B. [1 ,2 ]
机构
[1] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Lemont, IL 60439 USA
[2] Univ Chicago, Inst Mol Engn, 5640 S Ellis Ave, Chicago, IL 60637 USA
关键词
HOLE-CONDUCTOR-FREE; FORMAMIDINIUM LEAD TRIHALIDE; POWER CONVERSION EFFICIENCY; CARBON COUNTER ELECTRODE; HIGH-PERFORMANCE; SOLID-STATE; HIGHLY EFFICIENT; LOW-TEMPERATURE; LOW-COST; HALIDE PEROVSKITES;
D O I
10.1039/c5ta09911k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Conversion of light energy directly into electricity by solar cell devices represents one of the most promising options for highly scalable renewable power. Tremendous effort has been directed at improving photovoltaic (PV) conversion efficiencies, resulting in dramatic device performance increases over the past two decades for novel, cost-effective PV systems. Nevertheless, performance issues related to device stability, scalability, and flexibility prevent these novel designs from achieving their market potential. For mechanically flexible architectures, integration of new materials such as graphene-derived nanomaterials (i.e. graphene/graphite oxide and their modified analogs with other nanocarbons and carbon nanotubes) may be necessary to enhance alternatives to silicon-based PV systems. Among the diverse solar technologies, perovskite solar cells-most notably organometal halides-have stood out from the crowd with solar efficiencies over 20% and potential for highly scalable manufacturing. Here, we review the use of graphene and graphene-derived nanomaterials in new designs of perovskite solar cells associated with organic-inorganic metal halide perovskites utilized as light-harvesting layers, outlining design perspectives, device characterization, and performance. Recent efforts to clarify stability issues and efficiency control mechanisms are also briefly discussed, and we provide some perspective on the currently available literature and future research directions in the field.
引用
收藏
页码:6185 / 6235
页数:51
相关论文
共 273 条
[51]   Inverted Semi-transparent Polymer Solar Cells with Transparency Color Rendering Indices approaching 100 [J].
Czolk, Jens ;
Puetz, Andreas ;
Kutsarov, Dimitar ;
Reinhard, Manuel ;
Lemmer, Uli ;
Colsmann, Alexander .
ADVANCED ENERGY MATERIALS, 2013, 3 (03) :386-390
[52]   Hybrid Carbon Nanotube Networks as Efficient Hole Extraction Layers for Organic Photovoltaics [J].
Dabera, G. Dinesha M. R. ;
Jayawardena, K. D. G. Imalka ;
Prabhath, M. R. Ranga ;
Yahya, Iskandar ;
Tan, Y. Yuan ;
Nismy, N. Aamina ;
Shiozawa, Hidetsugu ;
Sauer, Markus ;
Ruiz-Soria, G. ;
Ayala, Paola ;
Stolojan, Vlad ;
Adikaari, A. A. Damitha T. ;
Jarowski, Peter D. ;
Pichler, Thomas ;
Silva, S. Ravi P. .
ACS NANO, 2013, 7 (01) :556-565
[53]   The case for organic photovoltaics [J].
Darling, Seth B. ;
You, Fengqi .
RSC ADVANCES, 2013, 3 (39) :17633-17648
[54]   Physics of thin-film ferroelectric oxides [J].
Dawber, M ;
Rabe, KM ;
Scott, JF .
REVIEWS OF MODERN PHYSICS, 2005, 77 (04) :1083-1130
[55]   Preparation and characterization of graphene oxide paper [J].
Dikin, Dmitriy A. ;
Stankovich, Sasha ;
Zimney, Eric J. ;
Piner, Richard D. ;
Dommett, Geoffrey H. B. ;
Evmenenko, Guennadi ;
Nguyen, SonBinh T. ;
Ruoff, Rodney S. .
NATURE, 2007, 448 (7152) :457-460
[56]   Carbon Nanotubes for Photoconversion and Electrical Energy Storage [J].
Dillon, A. C. .
CHEMICAL REVIEWS, 2010, 110 (11) :6856-6872
[57]   Unexpected Hole Transfer Leads to High Efficiency Single-Walled Carbon Nanotube Hybrid Photovoltaic [J].
Dissanayake, Nanditha M. ;
Zhong, Zhaohui .
NANO LETTERS, 2011, 11 (01) :286-290
[58]   Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates [J].
Docampo, Pablo ;
Ball, James M. ;
Darwich, Mariam ;
Eperon, Giles E. ;
Snaith, Henry J. .
NATURE COMMUNICATIONS, 2013, 4
[59]   Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals [J].
Dong, Qingfeng ;
Fang, Yanjun ;
Shao, Yuchuan ;
Mulligan, Padhraic ;
Qiu, Jie ;
Cao, Lei ;
Huang, Jinsong .
SCIENCE, 2015, 347 (6225) :967-970
[60]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240