Toward a dynamical shift condition for unequal mass black hole binary simulations

被引:17
作者
Mueller, Doreen [1 ]
Bruegmann, Bernd [1 ]
机构
[1] Univ Jena, Inst Theoret Phys, D-07743 Jena, Germany
关键词
NUMERICAL RELATIVITY;
D O I
10.1088/0264-9381/27/11/114008
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Moving puncture simulations of black hole binaries rely on a specific gauge choice that leads to approximately stationary coordinates near each black hole. Part of the shift condition is a damping parameter, which has to be properly chosen for stable evolutions. However, a constant damping parameter does not account for the difference in mass in unequal mass binaries. We introduce a position-dependent shift damping that addresses this problem. Although the coordinates change, the changes in the extracted gravitational waves are small.
引用
收藏
页数:16
相关论文
共 28 条
[1]   Gauge conditions for long-term numerical black hole evolutions without excision -: art. no. 084023 [J].
Alcubierre, M ;
Brügmann, B ;
Diener, P ;
Koppitz, M ;
Pollney, D ;
Seidel, E ;
Takahashi, R .
PHYSICAL REVIEW D, 2003, 67 (08)
[2]   Black hole excision for dynamic black holes -: art. no. 061501 [J].
Alcubierre, M ;
Brügmann, B ;
Pollney, D ;
Seidel, E ;
Takahashi, R .
PHYSICAL REVIEW D, 2001, 64 (06)
[3]   Simple excision of a black hole in 3+1 numerical relativity -: art. no. 104006 [J].
Alcubierre, M ;
Brügmann, B .
PHYSICAL REVIEW D, 2001, 63 (10)
[4]  
ALCUBIERRE M, 2004, ARXIVGRQC0411137
[5]   Single-domain spectral method for black hole puncture data -: art. no. 064011 [J].
Ansorg, M ;
Brügmann, B ;
Tichy, W .
PHYSICAL REVIEW D, 2004, 70 (06) :13
[6]   Gravitational-wave extraction from an inspiraling configuration of merging black holes [J].
Baker, JG ;
Centrella, J ;
Choi, DI ;
Koppitz, M ;
van Meter, J .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[7]   Coordinate conditions in three-dimensional numerical relativity [J].
Balakrishna, J ;
Daues, G ;
Seidel, E ;
Suen, WM ;
Tobias, M ;
Wang, E .
CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (12) :L135-L142
[8]   Numerical integration of Einstein's field equations [J].
Baumgarte, TW ;
Shapiro, SL .
PHYSICAL REVIEW D, 1999, 59 (02)
[9]   ADAPTIVE MESH REFINEMENT FOR HYPERBOLIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
BERGER, MJ ;
OLIGER, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 53 (03) :484-512
[10]   Well-posedness of the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein's field equations [J].
Beyer, H ;
Sarbach, O .
PHYSICAL REVIEW D, 2004, 70 (10) :104004-1