Rapid Expansion and Functional Divergence of Subtelomeric Gene Families in Yeasts

被引:243
作者
Brown, Chris A. [1 ]
Murray, Andrew W. [1 ]
Verstrepen, Kevin J. [1 ,2 ,3 ]
机构
[1] Harvard Univ, Fac Arts & Sci, Ctr Syst Biol, Cambridge, MA 02138 USA
[2] Katholieke Univ Leuven VIB, Lab Syst Biol, B-3001 Louvain, Belgium
[3] Katholieke Univ Leuven, Ctr Microbial & Plant Genet CMPG G&G, B-3001 Louvain, Belgium
基金
美国国家卫生研究院; 美国国家科学基金会; 欧洲研究理事会;
关键词
ALPHA-GLUCOSIDE TRANSPORTER; TELOMERIC REPEATED GENES; SACCHAROMYCES-CEREVISIAE; CHROMOSOME ENDS; SEGMENTAL DUPLICATIONS; MAL LOCI; EVOLUTION; FLOCCULATION; PRINCIPLES; DIVERSITY;
D O I
10.1016/j.cub.2010.04.027
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Subtelomeres, regions proximal to telomeres, exhibit characteristics unique to eukaryotic genomes. Genes residing in these loci are subject to epigenetic regulation and elevated rates of both meiotic and mitotic recombination. However, most genome sequences do not contain assembled subtelomeric sequences, and, as a result, subtelomeres are often overlooked in comparative genomics. Results: We studied the evolution and functional divergence of subtelomeric gene families in the yeast lineage. Our computational results show that subtelomeric families are evolving and expanding much faster than families that do not contain subtelomeric genes. Focusing on three related subtelomeric MAL gene families involved in disaccharide metabolism that show typical patterns of rapid expansion and evolution, we show experimentally how frequent duplication events followed by functional divergence yield novel alleles that allow the metabolism of different carbohydrates. Conclusions: Taken together, our computational and experimental analyses show that the extraordinary instability of eukaryotic subtelomeres supports rapid adaptation to novel niches by promoting gene recombination and duplication followed by functional divergence of the alleles.
引用
收藏
页码:895 / 903
页数:9
相关论文
共 59 条
  • [1] ABELSON J, 2004, GUIDE YEAST GENETICS, P933
  • [2] Molecular population genetics of Drosophila subtelomeric DNA
    Anderson, Jennifer A.
    Song, Yun S.
    Langley, Charles H.
    [J]. GENETICS, 2008, 178 (01) : 477 - 487
  • [3] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [4] Primate segmental duplications: crucibles of evolution, diversity and disease
    Bailey, Jeffrey A.
    Eichler, Evan E.
    [J]. NATURE REVIEWS GENETICS, 2006, 7 (07) : 552 - 564
  • [5] Why are parasite contingency genes often associated with telomeres?
    Barry, JD
    Ginger, ML
    Burton, P
    McCulloch, R
    [J]. INTERNATIONAL JOURNAL FOR PARASITOLOGY, 2003, 33 (01) : 29 - 45
  • [6] Meiotic recombination at the ends of chromosomes in Saccharomyces cerevisiae
    Barton, Arnold B.
    Pekosz, Michael R.
    Kurvathi, Rohini S.
    Kaback, David B.
    [J]. GENETICS, 2008, 179 (03) : 1221 - 1235
  • [7] Precise sequence complementarity between yeast chromosome ends and two classes of just-subtelomeric sequences
    Britten, RJ
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (11) : 5906 - 5912
  • [8] EVOLUTION OF THE DISPERSED SUC GENE FAMILY OF SACCHAROMYCES BY REARRANGEMENTS OF CHROMOSOME TELOMERES
    CARLSON, M
    CELENZA, JL
    ENG, FJ
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 1985, 5 (11) : 2894 - 2902
  • [9] CHARRON MJ, 1989, GENETICS, V122, P307
  • [10] MAL11 AND MAL61 ENCODE THE INDUCIBLE HIGH-AFFINITY MALTOSE TRANSPORTER OF SACCHAROMYCES-CEREVISIAE
    CHENG, Q
    MICHELS, CA
    [J]. JOURNAL OF BACTERIOLOGY, 1991, 173 (05) : 1817 - 1820