Synergy Between Expert and Machine-Learning Approaches Allows for Improved Retrosynthetic Planning

被引:59
作者
Badowski, Tomasz [1 ]
Gajewska, Ewa P. [1 ]
Molga, Karol [1 ]
Grzybowski, Bartosz A. [1 ,2 ,3 ]
机构
[1] Polish Acad Sci, Inst Organ Chem, Ul Kasprzaka 44-52, PL-01224 Warsaw, Poland
[2] UNIST, IBS Ctr Soft & Living Matter, 50 UNIST Gil, Ulsan, South Korea
[3] UNIST, Dept Chem, 50 UNIST Gil, Ulsan, South Korea
关键词
artificial intelligence; computer-aided retrosynthesis; expert systems; neural networks; COMPUTER; DESIGN;
D O I
10.1002/anie.201912083
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
When computers plan multistep syntheses, they can rely either on expert knowledge or information machine-extracted from large reaction repositories. Both approaches suffer from imperfect functions evaluating reaction choices: expert functions are heuristics based on chemical intuition, whereas machine learning (ML) relies on neural networks (NNs) that can make meaningful predictions only about popular reaction types. This paper shows that expert and ML approaches can be synergistic-specifically, when NNs are trained on literature data matched onto high-quality, expert-coded reaction rules, they achieve higher synthetic accuracy than either of the methods alone and, importantly, can also handle rare/specialized reaction types.
引用
收藏
页码:725 / 730
页数:6
相关论文
共 26 条
  • [11] A LOGIC-BASED PROGRAM FOR SYNTHESIS DESIGN
    HENDRICKSON, JB
    GRIER, DL
    TOCZKO, AG
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1985, 107 (18) : 5228 - 5238
  • [12] Efficient Syntheses of Diverse, Medicinally Relevant Targets Planned by Computer and Executed in the Laboratory
    Klucznik, Tomasz
    Mikulak-Klucznik, Barbara
    McCormack, Michael P.
    Lima, Heather
    Szymkuc, Sara
    Bhowmick, Manishabrata
    Molga, Karol
    Zhou, Yubai
    Rickershauser, Lindsey
    Gajewska, Ewa P.
    Toutchkine, Alexei
    Dittwald, Piotr
    Startek, Michal P.
    Kirkovits, Gregory J.
    Roszak, Rafal
    Adamski, Ariel
    Sieredzinska, Bianka
    Mrksich, Milan
    Trice, Sarah L. J.
    Grzybowski, Bartosz A.
    [J]. CHEM, 2018, 4 (03): : 522 - 532
  • [13] Computational design of syntheses leading to compound libraries or isotopically labelled targets
    Molga, Karol
    Dittwald, Piotr
    Grzybowski, Bartosz A.
    [J]. CHEMICAL SCIENCE, 2019, 10 (40) : 9219 - 9232
  • [14] The logic of translating chemical knowledge into machine-processable forms: a modern playground for physical-organic chemistry
    Molga, Karol
    Gajewska, Ewa P.
    Szymkuc, Sara
    Grzybowski, Bartosz A.
    [J]. REACTION CHEMISTRY & ENGINEERING, 2019, 4 (09) : 1506 - 1521
  • [15] Navigating around Patented Routes by Preserving Specific Motifs along Computer-Planned Retrosynthetic Pathways
    Molga, Karol
    Dittwald, Piotr
    Grzybowski, Bartosz A.
    [J]. CHEM, 2019, 5 (02): : 460 - 473
  • [16] Synthesis of Prostaglandin Analogues, Latanoprost and Bimatoprost, Using Organocatalysis via a Key Bicyclic Enal Intermediate
    Prevost, Sebastien
    Thai, Karen
    Schuetzenmeister, Nina
    Coulthard, Graeme
    Erb, William
    Aggarwal, Varinder K.
    [J]. ORGANIC LETTERS, 2015, 17 (03) : 504 - 507
  • [17] A novel strategy for the chiral 2,4,5-triol moiety and its application to the synthesis of seimatopolide A and (2S,3R,5S)-(-)-2,3-dihydroxytetradecan-5-olide
    Reddy, B. Phaneendra
    Pandurangam, T.
    Yadav, J. S.
    Reddy, B. V. Subba
    [J]. TETRAHEDRON LETTERS, 2012, 53 (43) : 5749 - 5752
  • [18] Learning Retrosynthetic Planning through Simulated Experience
    Schreck, John S.
    Coley, Connor W.
    Bishop, Kyle J. M.
    [J]. ACS CENTRAL SCIENCE, 2019, 5 (06) : 970 - 981
  • [19] Schwaller P., 2019, ARXIV191008036CSLG
  • [20] Planning chemical syntheses with deep neural networks and symbolic AI
    Segler, Marwin H. S.
    Preuss, Mike
    Waller, Mark P.
    [J]. NATURE, 2018, 555 (7698) : 604 - +