Rhizosphere bacterial signalling: A love parade beneath our feet

被引:265
作者
Somers, E
Vanderleyden, J
Srinivasan, M
机构
[1] Katholieke Univ Leuven, Ctr Microbial & Plant Genet, B-3001 Heverlee, Belgium
[2] Norsk Hydro AS, Hydro Heroya Ind Ok, Agri Res Ctr, N-3901 Porsgrunn, Norway
关键词
plant growth-promoting bacteria; Azospirillum; colonization;
D O I
10.1080/10408410490468786
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Plant roots support the growth and activities of a wide variety of microorganisms that may have a profound effect on the growth and/or health of plants. Among these microorganisms, a high diversity of bacteria have been identified and categorized as deleterious, beneficial. or neutral with respect to the plant. The beneficial bacteria, termed plant growth-promoting rhizobacteria (PGPR), are widely studied by microbiologists and agronomists because of their potential in plant production. Azospirillum, a genus of versatile PGPR, is able to enhance the plant growth and yield of a wide range of economically important crops in different soils and climatic regions. Plant beneficial effects of Azospirillum have mainly been attributed to the production of phytohormones, nitrate reduction, and nitrogen fixation, which have been subject of extensive research throughout the years. These elaborate studies made Azovpirillum one of the best-characterized genera of PGPR. However, the genetic and molecular determinants involved in the initial interaction between Azospirillum and plant roots are not yet fully understood. This review will mainly highlight the current knowledge on Azospirillum plant root interactions, in the context of preceding and ongoing research on the association between plants and plant growth-promoting rhizobacteria.
引用
收藏
页码:205 / 240
页数:36
相关论文
共 474 条
[71]   Effect of phosphorus on root colonization and growth promotion of maize by bioluminescent mutants of phosphate-solubilizing Rhizobium leguminosarum biovar phaseoli [J].
Chabot, R ;
Beauchamp, CJ ;
Kloepper, JW ;
Antoun, H .
SOIL BIOLOGY & BIOCHEMISTRY, 1998, 30 (12) :1615-1618
[72]   GREEN FLUORESCENT PROTEIN AS A MARKER FOR GENE-EXPRESSION [J].
CHALFIE, M ;
TU, Y ;
EUSKIRCHEN, G ;
WARD, WW ;
PRASHER, DC .
SCIENCE, 1994, 263 (5148) :802-805
[73]  
Chancey ST, 1999, APPL ENVIRON MICROB, V65, P2294
[74]   Structural identification of a bacterial quorum-sensing signal containing boron [J].
Chen, X ;
Schauder, S ;
Potier, N ;
Van Dorsselaer, A ;
Pelczer, I ;
Bassler, BL ;
Hughson, FM .
NATURE, 2002, 415 (6871) :545-549
[75]   Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti [J].
Cheng, HP ;
Walker, GC .
JOURNAL OF BACTERIOLOGY, 1998, 180 (19) :5183-5191
[76]   Succinoglycan production by Rhizobium meliloti is regulated through the ExoS-ChvI two-component regulatory system [J].
Cheng, HP ;
Walker, GC .
JOURNAL OF BACTERIOLOGY, 1998, 180 (01) :20-26
[77]  
CHET I, 1991, RHIZOSPHERE PLANT GR
[78]   Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot [J].
Chin-A-Woeng, TFC ;
Bloemberg, GV ;
Mulders, IHM ;
Dekkers, LC ;
Lugtenberg, BJJ .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2000, 13 (12) :1340-1345
[79]   Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium [J].
Chin-A-Woeng, TFC ;
van den Broek, D ;
de Voer, G ;
van der Drift, KMGM ;
Tuinman, S ;
Thomas-Oates, JE ;
Lugtenberg, BJJ ;
Bloemberg, GV .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2001, 14 (08) :969-979
[80]   Description of the colonization of a gnotobiotic tomato rhizosphere by Pseudomonas fluorescens biocontrol strain WCS365, using scanning electron microscopy [J].
ChinAWoeng, TFC ;
dePriester, W ;
vanderBij, AJ ;
Lugtenberg, BJJ .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1997, 10 (01) :79-86