Directed evolution of metabolically engineered Escherichia coli for carotenoid production

被引:91
作者
Wang, CW [1 ]
Oh, MK [1 ]
Liao, JC [1 ]
机构
[1] Univ Calif Los Angeles, Dept Chem Engn, Los Angeles, CA 90095 USA
关键词
D O I
10.1021/bp000124f
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We have previously introduced a reconstructed isoprenoid pathway into Escherichia coli that exhibits amplified biosynthetic flux to geranylgeranyl diphosphate (GGPP), a common isoprenoid precursor. It was shown that GGPP synthase is an important rate-controlling enzyme in this reconstructed isoprenoid pathway. In this investigation, we applied directed evolution to GGPP synthase from Archaeoglobus fulgidus to enable the enhanced production of carotenoids in metabolically engineered E. coli. Eight mutants were isolated, and the best one increased lycopene production by 100%. Among the mutants that were isolated, mutation points were clustered in four "hot regions". The "hottest" region is located in the sequence upstream of the coding region, which presumably improves the expression level of the enzyme. The other three are within the coding sequence and are believed to improve the enzyme-specific activity in E coli. These results demonstrate that modulating both enzymatic expression and specific activity are important for optimizing the metabolic flux distribution.
引用
收藏
页码:922 / 926
页数:5
相关论文
共 23 条
[1]   Metabolic engineering of the terpenoid biosynthetic pathway of Escherichia coli for production of the carotenoids β-carotene and zeaxanthin [J].
Albrecht, M ;
Misawa, N ;
Sandmann, G .
BIOTECHNOLOGY LETTERS, 1999, 21 (09) :791-795
[2]  
CADWELL RC, 1994, PCR METH APPL, V3, P136
[3]   MOLECULAR-CLONING AND EXPRESSION IN ESCHERICHIA-COLI OF A CYANOBACTERIAL GENE CODING FOR PHYTOENE SYNTHASE, A CAROTENOID BIOSYNTHESIS ENZYME [J].
CHAMOVITZ, D ;
MISAWA, N ;
SANDMANN, G ;
HIRSCHBERG, J .
FEBS LETTERS, 1992, 296 (03) :305-310
[4]  
CHEN AJ, 1994, PROTEIN SCI, V3, P600
[5]   Improved green fluorescent protein by molecular evolution using DNA shuffling [J].
Crameri, A ;
Whitehorn, EA ;
Tate, E ;
Stemmer, WPC .
NATURE BIOTECHNOLOGY, 1996, 14 (03) :315-319
[6]   DNA shuffling of a family of genes from diverse species accelerates directed evolution [J].
Crameri, A ;
Raillard, SA ;
Bermudez, E ;
Stemmer, WPC .
NATURE, 1998, 391 (6664) :288-291
[7]   Improving lycopene production in Escherichia coli by engineering metabolic control [J].
Farmer, WR ;
Liao, JC .
NATURE BIOTECHNOLOGY, 2000, 18 (05) :533-537
[8]   MOLECULAR-CLONING OF THE PLASMID RP4 PRIMASE REGION IN A MULTI-HOST-RANGE TACP EXPRESSION VECTOR [J].
FURSTE, JP ;
PANSEGRAU, W ;
FRANK, R ;
BLOCKER, H ;
SCHOLZ, P ;
BAGDASARIAN, M ;
LANKA, E .
GENE, 1986, 48 (01) :119-131
[9]   Expression of prokaryotic 1-deoxy-D-xylulose-5-phosphatases in Escherichia coli increases carotenoid and ubiquinone biosynthesis [J].
Harker, M ;
Bramley, PM .
FEBS LETTERS, 1999, 448 (01) :115-119
[10]   FUNCTIONAL ASSIGNMENT OF ERWINIA-HERBICOLA EHO10 CAROTENOID GENES EXPRESSED IN ESCHERICHIA-COLI [J].
HUNDLE, B ;
ALBERTI, M ;
NIEVELSTEIN, V ;
BEYER, P ;
KLEINIG, H ;
ARMSTRONG, GA ;
BURKE, DH ;
HEARST, JE .
MOLECULAR & GENERAL GENETICS, 1994, 245 (04) :406-416