Isotope-coded N-terminal sulfonation of peptides allows quantitative proteomic analysis with increased de novo peptide sequencing capability

被引:39
作者
Lee, YH
Han, H
Chang, SB
Lee, SW
机构
[1] Korea Univ, Dept Chem, Seoul 136701, South Korea
[2] Korea Univ, Ctr Electro & Photo Respons Mol, Seoul 136701, South Korea
[3] Korea Adv Inst Sci & Technol, Ctr Mol Design & Synth, Dept Chem, Taejon 305701, South Korea
[4] Korea Adv Inst Sci & Technol, Sch Mol Sci, Taejon 305701, South Korea
关键词
D O I
10.1002/rcm.1724
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Recently various methods for the N-terminal sulfonation of peptides have been developed for the mass spectrometric analyses of proteomic samples to facilitate de novo sequencing of the peptides produced. This paper describes the isotope-coded N-terminal sulfonation (lCenS) of peptides; this procedure allows both de novo peptide sequencing and quantitative proteomics to be studied simultaneously. As N-terminal sulfonation reagents, C-13-labeled 4-sulfophenyl[(13)C6]isothiocyanate (C-13-SPITC) and unlabeled 4-sulfophenyl isothiocyanate (C-12-SPITC) were synthesized. The experimental and reference peptide mixtures were derivatized independently using C-13-SPITC and C-12-SPITC and then combined to generate an isotopically labeled peptide mixture in which each isotopic pair differs in mass by 6 Da. Capillary reverse-phase liquid chromatography/tandem mass spectrometry experiments on the resulting peptide mixtures revealed several immediate advantages of lCenS in addition to the de novo sequencing capability of N-terminal sulfonation, namely, differentiation between N-terminal sulfonated peptides and unmodified peptides in mass spectra, differentiation between N- and C-terminal fragments in tandem mass spectra of multiply protonated peptides by comparing fragmentations of the isotopic pairs, and relative peptide quantification between proteome samples. We demonstrate that the combination of N-terminal sulfonation and isotope coding in the mass spectrometric analysis of proteomic samples is a viable method that overcomes many problems associated with current N-terminal sulfonation methods. Copyright (C) 2004 John Wiley Sons, Ltd.
引用
收藏
页码:3019 / 3027
页数:9
相关论文
共 30 条
[1]   Phosphopeptide analysis by matrix-assisted laser desorption time-of-flight mass spectrometry [J].
Annan, RS ;
Carr, SA .
ANALYTICAL CHEMISTRY, 1996, 68 (19) :3413-3421
[2]   High-throughput global peptide proteomic analysis by combining stable isotope amino acid labeling and data-dependent multiplexed-MS/MS [J].
Berger, SJ ;
Lee, SW ;
Anderson, GA ;
Pasa-Tolic, L ;
Tolic, N ;
Shen, YF ;
Zhao, R ;
Smith, RD .
ANALYTICAL CHEMISTRY, 2002, 74 (19) :4994-5000
[3]   Guanidino labeling derivatization strategy for global characterization of peptide mixtures by liquid chromatography matrix-assisted laser desorption/ionization mass spectrometry [J].
Brancia, FL ;
Montgomery, H ;
Tanaka, K ;
Kumashiro, S .
ANALYTICAL CHEMISTRY, 2004, 76 (10) :2748-2755
[4]   Quantitative analysis of bacterial and mammalian proteomes using a combination of cysteine affinity tags and 15N-Metabolic labeling [J].
Conrads, TP ;
Alving, K ;
Veenstra, TD ;
Belov, ME ;
Anderson, GA ;
Anderson, DJ ;
Lipton, MS ;
Pasa-Tolic, L ;
Udseth, HR ;
Chrisler, WB ;
Thrall, BD ;
Smith, RD .
ANALYTICAL CHEMISTRY, 2001, 73 (09) :2132-2139
[5]   AN APPROACH TO CORRELATE TANDEM MASS-SPECTRAL DATA OF PEPTIDES WITH AMINO-ACID-SEQUENCES IN A PROTEIN DATABASE [J].
ENG, JK ;
MCCORMACK, AL ;
YATES, JR .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 1994, 5 (11) :976-989
[6]  
FURNIS BS, 1989, VOGELS TXB ORGANIC C, P912
[7]  
Gevaert K, 2001, ELECTROPHORESIS, V22, P1645, DOI 10.1002/1522-2683(200105)22:9<1645::AID-ELPS1645>3.0.CO
[8]  
2-Z
[9]   Differential stable isotope labeling of peptides for quantitation and de novo sequence derivation [J].
Goodlett, DR ;
Keller, A ;
Watts, JD ;
Newitt, R ;
Yi, EC ;
Purvine, S ;
Eng, JK ;
von Haller, P ;
Aebersold, R ;
Kolker, E .
RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2001, 15 (14) :1214-1221
[10]   Quantitative analysis of complex protein mixtures using isotope-coded affinity tags [J].
Gygi, SP ;
Rist, B ;
Gerber, SA ;
Turecek, F ;
Gelb, MH ;
Aebersold, R .
NATURE BIOTECHNOLOGY, 1999, 17 (10) :994-999