Structural and Biophysical Studies of Human PARP-1 in Complex with Damaged DNA

被引:59
作者
Lilyestrom, Wayne
van der Woerd, Mark J.
Clark, Nicholas
Luger, Karolin [1 ]
机构
[1] Colorado State Univ, Howard Hughes Med Inst, Ft Collins, CO 80523 USA
基金
美国国家卫生研究院;
关键词
poly(ADP-ribose) polymerase-1; PARP-1 DNA damage; small-angle X-ray scattering; SMALL-ANGLE SCATTERING; HUMAN POLY(ADP-RIBOSE) POLYMERASE-1; BIOLOGICAL MACROMOLECULES; HU BINDS; ACTIVATION; DOMAIN; RESOLUTION; CHROMATIN; REPAIR; CELLS;
D O I
10.1016/j.jmb.2009.11.062
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The enzyme poly(ADP-ribose) polymerase-1 (PARP-1) is a global monitor of chromatin structure and DNA damage repair. PARP-1 binds to nucleosomes and poly(ADP-ribosylates) histories and several chromatin-associated factors to expose specific DNA sequences to the cellular machinery involved in gene transcription and/or DNA damage repair. While these processes are critical to genomic stability, the molecular mechanisms of how DNA damage induces PARP-1 activation are poorly understood. We have used biochemical and thermodynamic measurements in conjunction with small-angle X-ray scattering to determine the stoichiometry, affinity, and overall Structure of a human PARP-1 construct containing the entire DNA binding region, the zinc ribbon domain, and automodification domains (residues 1-486). The interaction of this PARP-1. protein construct with three different DNA damage models (DNA constructs containing a nick, a blunt end, or a 3' extension) was evaluated. Our data indicate that PARP-1 binds each DNA damage model as a monomer and with similar affinity, in all cases resulting in robust activation of the catalytic domain. Using small-angle X-ray scattering, we determined that the N-terminal half of PARP-1. behaves as an extended and flexible arrangement of individually folded domains in the absence of DNA. Upon binding DNA, PARP-1 undergoes a conformational change in the area surrounding the zinc ribbon domain. These data support a model in which PARP-1, upon binding DNA, undergoes a conformational change to become an active nuclear enzyme. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:983 / 994
页数:12
相关论文
共 33 条
[21]  
NOLAN NL, 1980, EUR J BIOCHEM, V113, P15
[22]   Poly(ADP-ribose) polymerase 1 is inhibited by a histone H2A variant, MacroH2A, and contributes to silencing of the inactive X chromosome [J].
Nusinow, Dmitri A. ;
Hernandez-Munoz, Inmaculada ;
Fazzio, Thomas G. ;
Shah, Girish M. ;
Kraus, W. Lee ;
Panning, Barbara .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (17) :12851-12859
[23]   POLY(ADP-RIBOSE) AND THE RESPONSE OF CELLS TO IONIZING-RADIATION [J].
OLEINICK, NL ;
EVANS, HH .
RADIATION RESEARCH, 1985, 101 (01) :29-46
[24]   Global rigid body modeling of macromolecular complexes against small-angle scattering data [J].
Petoukhov, MV ;
Svergun, DI .
BIOPHYSICAL JOURNAL, 2005, 89 (02) :1237-1250
[25]   Sensing DNA damage by PARP-like fingers [J].
Petrucco, S .
NUCLEIC ACIDS RESEARCH, 2003, 31 (23) :6689-6699
[26]   Structural recognition of DNA by poly(ADP-ribose)polymerase-like zinc finger families [J].
Petrucco, Stefania ;
Percudani, Riccardo .
FEBS JOURNAL, 2008, 275 (05) :883-893
[27]   DNA-induced dimerization of poly(ADP-ribose) polymerase-1 triggers its activation [J].
Pion, E ;
Ullmann, GM ;
Amé, JC ;
Gérard, D ;
de Murcia, G ;
Bombarda, E .
BIOCHEMISTRY, 2005, 44 (44) :14670-14681
[28]   Poly(ADP-ribose) polymerase-1 dimerizes at a 5′ recessed DNA end in vitro:: A fluorescence study [J].
Pion, E ;
Bombarda, E ;
Stiegler, P ;
Ullmann, GM ;
Mély, Y ;
de Murcia, G ;
Gérard, D .
BIOCHEMISTRY, 2003, 42 (42) :12409-12417
[29]   THE HUMAN POLY(ADP-RIBOSE) POLYMERASE NUCLEAR-LOCALIZATION SIGNAL IS A BIPARTITE ELEMENT FUNCTIONALLY SEPARATE FROM DNA-BINDING AND CATALYTIC ACTIVITY [J].
SCHREIBER, V ;
MOLINETE, M ;
BOEUF, H ;
DEMURCIA, G ;
MENISSIERDEMURCIA, J .
EMBO JOURNAL, 1992, 11 (09) :3263-3269
[30]   Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing [J].
Svergun, DI .
BIOPHYSICAL JOURNAL, 1999, 76 (06) :2879-2886