Robust fuzzy design for nonlinear uncertain stochastic systems via sliding-mode control

被引:179
作者
Ho, Daniel W. C. [1 ]
Niu, Yugang
机构
[1] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[2] E China Univ Sci & Technol, Sch Informat Sci & Engn, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
fuzzy control; nonlinear uncertainties; sliding-mode control (SMC); stochastic systems;
D O I
10.1109/TFUZZ.2006.880006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper deals with the sliding-mode control (SMC) problem for nonlinear stochastic time-delay systems by means of fuzzy approach. The Takagi-Sugeno (T-S) fuzzy stochastic time-delay model with parametric uncertainties and unknown nonlinearies is, presented. A sufficient condition for the exponential stability in mean square of the sliding motion is also derived. Moreover, it is shown that when the linear matrix inequalities (LMIs) with equality constraint are feasible, the designs of both sliding surface and sliding-mode controller can be easily obtained via convex optimization. A simulation example illustrating the proposed method is given.
引用
收藏
页码:350 / 358
页数:9
相关论文
共 32 条
[1]  
[Anonymous], IEEE T AUTOMATIC CON
[2]   A survey of applications of second-order sliding mode control to mechanical systems [J].
Bartolini, G ;
Pisano, A ;
Punta, E ;
Usai, E .
INTERNATIONAL JOURNAL OF CONTROL, 2003, 76 (9-10) :875-892
[3]   Robust H∞ disturbance attenuation for a class of uncertain discrete-time fuzzy systems [J].
Cao, YY ;
Frank, PM .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2000, 8 (04) :406-415
[4]   Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach [J].
Cao, YY ;
Frank, PM .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2000, 8 (02) :200-211
[5]  
CHEN B, 2004, FUZZY SETS SYST
[6]   Output-feedback stochastic nonlinear stabilization [J].
Deng, H ;
Krstic, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (02) :328-333
[7]  
deOliveira MC, 1997, P AMER CONTR CONF, P72, DOI 10.1109/ACC.1997.611757
[8]   State feedback stabilization for a class of stochastic time-delay nonlinear systems [J].
Fu, YS ;
Tian, ZH ;
Shi, SJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (02) :282-286
[9]  
GEROMEL JC, 1994, PROCEEDINGS OF THE 1994 AMERICAN CONTROL CONFERENCE, VOLS 1-3, P40
[10]   Optimal H infinity model reduction via linear matrix inequalities: Continuous- and discrete-time cases [J].
Grigoriadis, KM .
SYSTEMS & CONTROL LETTERS, 1995, 26 (05) :321-333