Context quantization and contextual self-organizing maps

被引:12
作者
Voegtlin, T [1 ]
机构
[1] CNRS, UPR 9075, Inst Cognit Sci, F-69365 Lyon, France
来源
IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL VI | 2000年
关键词
D O I
10.1109/IJCNN.2000.859367
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Vector quantization consists in finding a discrete approximation of a continuous input. One of the most popular neural algorithms related to vector quantization is the, so called, Kohonen map. In this paper we generalize vector quantization to temporal data, introducing context quantization. We propose a recurrent network inspired by the Kohonen map, the Contextual Self-Organizing Map, that develops near-optimal representations of context. We demonstrate quantitatively that this algorithm shows better performance than the other neural methods proposed so far.
引用
收藏
页码:20 / 25
页数:6
相关论文
共 13 条
[1]  
[Anonymous], INT J KNOWLEDGE BASE
[2]   THE TEMPORAL KOHONEN MAP [J].
CHAPPELL, GJ ;
TAYLOR, JG .
NEURAL NETWORKS, 1993, 6 (03) :441-445
[3]   FINDING STRUCTURE IN TIME [J].
ELMAN, JL .
COGNITIVE SCIENCE, 1990, 14 (02) :179-211
[4]  
EULIANO NR, 1996, P ICNN, P1900
[5]  
HOEKSTRA A, 1993, P INT C ART NEUR NET, P404
[6]  
James D. L., 1995, Advances in Neural Information Processing Systems 7, P577
[7]  
Kangas J, 1994, THESIS HELSINKI U TE
[8]  
Kohonen T., 1997, Self-organizing Maps, V2nd ed.
[9]  
KOPECZ K, 1995, P INT C ART NEUR NET, P431
[10]  
Varsta M., 1997, P WORKSH SELF ORG MA, P197