Organic semiconductor core-shell nanoparticles designed through successive solvent displacements

被引:26
作者
Chambon, Sylvain [1 ,2 ]
Schatz, Christophe [3 ,4 ]
Sebire, Vivien [1 ,2 ]
Pavageau, Bertrand [5 ,6 ,7 ]
Wantz, Guillaume [1 ,2 ]
Hirsch, Lionel [1 ,2 ]
机构
[1] Univ Bordeaux, IMS, UMR 5218, F-33400 Talence, France
[2] CNRS, IMS, UMR 5218, F-33400 Talence, France
[3] Univ Bordeaux, LCPO, UMR 5629, F-33600 Pessac, France
[4] CNRS, LCPO, UMR 5629, F-33600 Pessac, France
[5] Univ Bordeaux, LOF, UMR 5258, F-33600 Pessac, France
[6] CNRS, LOF, UMR 5258, F-33600 Pessac, France
[7] Solvay RHODIA, LOF, UMR 5258, F-33600 Pessac, France
关键词
COMPOSITE P3HT/PCBM NANOPARTICLES; DONOR-ACCEPTOR HETEROJUNCTIONS; PHOTOINDUCED ELECTRON-TRANSFER; PHOTOVOLTAIC DEVICES; SOLAR-CELLS; POLYMER NANOPARTICLES; EXCITON DIFFUSION; PHASE-SEPARATION; POLY(3-HEXYLTHIOPHENE); WATER;
D O I
10.1039/c4mh00021h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study reports for the first time the elaboration of core-shell organic nanoparticles through successive solvent displacements. The concept has been applied to generate donor-acceptor nanoparticles with the commonly used organic semiconductors P3HT and PCBM. The strategy is based on the sequential nanoprecipitation of P3HT and PCBM. Starting from a P3HT: PCBM solution in THF, the first solvent displacement with DMSO triggers the formation of the P3HT core while the second displacement with water generates the PCBM shell. The core-shell morphology is evidenced by both DLS and TEM. Efficient quenching of the P3HT photoluminescence is observed after the second solvent displacement procedure, confirming the formation of a well-defined PCBM shell around the P3HT core. Studying the emission of such core-shell nanoparticles leads to an estimation of the diffusion length of photogenerated excitons in P3HT of around similar to 14 nm.
引用
收藏
页码:431 / 438
页数:8
相关论文
共 38 条
[1]   Aqueous Processing of Low-Band-Gap Polymer Solar Cells Using Roll-to-Roll Methods [J].
Andersen, Thomas R. ;
Larsen-Olsen, Thue T. ;
Andreasen, Birgitta ;
Bottiger, Arvid P. L. ;
Carle, Jon E. ;
Helgesen, Martin ;
Bundgaard, Eva ;
Norrman, Kion ;
Andreasen, Jens W. ;
Jorgensen, Mikkel ;
Krebs, Frederik C. .
ACS NANO, 2011, 5 (05) :4188-4196
[2]  
Arrhenius S., 1887, Z. Phys. Chem, V1
[3]   Nanoprecipitation of Polymethylmethacrylate by Solvent Shifting: 1. Boundaries [J].
Aubry, Julien ;
Ganachaud, Francois ;
Addad, Jean-Pierre Cohen ;
Cabane, Bernard .
LANGMUIR, 2009, 25 (04) :1970-1979
[4]   Efficient Charge Transport in Assemblies of Surfactant-Stabilized Semiconducting Nanoparticles [J].
Bag, Monojit ;
Gehan, Timothy S. ;
Algaier, Dana D. ;
Liu, Feng ;
Nagarjuna, Gavvalapalli ;
Lahti, Paul M. ;
Russell, Thomas P. ;
Venkataraman, Dhandapani .
ADVANCED MATERIALS, 2013, 25 (44) :6411-6415
[5]   Control of the nanoscale crystallinity and phase separation in polymer solar cells [J].
Chu, Chih-Wei ;
Yang, Hoichang ;
Hou, Wei-Jen ;
Huang, Jinsong ;
Li, Gang ;
Yang, Yang .
APPLIED PHYSICS LETTERS, 2008, 92 (10)
[6]   Surfactant-free nanoparticulate organic photovoltaics [J].
Darwis, Darmawati ;
Holmes, Natalie ;
Elkington, Daniel ;
Kilcoyne, A. L. David ;
Bryant, Glenn ;
Zhou, Xiaojing ;
Dastoor, Paul ;
Belcher, Warwick .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 121 :99-107
[7]   Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells [J].
Erb, T ;
Zhokhavets, U ;
Gobsch, G ;
Raleva, S ;
Stühn, B ;
Schilinsky, P ;
Waldauf, C ;
Brabec, CJ .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (07) :1193-1196
[8]   Influence of a non-ionic surfactant on the UV-vis absorption features of regioregular head-to-tail poly (3-hexylthiophene) in water-based dispersions [J].
Fraleoni-Morgera, A ;
Marazzita, S ;
Frascaro, D ;
Setti, L .
SYNTHETIC METALS, 2004, 147 (1-3) :149-154
[9]   Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells [J].
Goh, Chiatzun ;
Scully, Shawn R. ;
McGehee, Michael D. .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (11)
[10]   Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C-60 heterojunction photovoltaic cell [J].
Halls, JJM ;
Pichler, K ;
Friend, RH ;
Moratti, SC ;
Holmes, AB .
APPLIED PHYSICS LETTERS, 1996, 68 (22) :3120-3122