Stability criterion for synchronization of linearly coupled unified chaotic systems

被引:71
作者
Park, JH [1 ]
机构
[1] Yeungnam Univ, Dept Elect Engn, Robust Control & Nonlinear Dynam Lab, 214-1 Dae Dong, Kyongsan 712749, South Korea
关键词
D O I
10.1016/j.chaos.2004.06.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates the synchronization of two linearly coupled unified chaotic systems. A new stability criterion for asymptotic synchronization is attained using the Lyapunov stability theory and linear matrix inequality (LMI) approach. A numerical example is given to illuminate the design procedure and advantage of the result derived. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1319 / 1325
页数:7
相关论文
共 19 条
[11]   Chaotic behavior in first-order autonomous continuous-time systems with delay [J].
Lu, HT ;
He, ZY .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1996, 43 (08) :700-702
[12]   Synchronization of a unified chaotic system and the application in secure communication [J].
Lu, J ;
Wu, XQ ;
Lü, JH .
PHYSICS LETTERS A, 2002, 305 (06) :365-370
[13]   Controlling uncertain Lu system using linear feedback [J].
Lü, JH ;
Lu, JN .
CHAOS SOLITONS & FRACTALS, 2003, 17 (01) :127-133
[14]   Bridge the gap between the Lorenz system and the Chen system [J].
Lü, JH ;
Chen, GR ;
Cheng, DZ ;
Celikovsky, S .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (12) :2917-2926
[15]   Chaos synchronization between linearly coupled chaotic systems [J].
Lü, JH ;
Zhou, TS ;
Zhang, SC .
CHAOS SOLITONS & FRACTALS, 2002, 14 (04) :529-541
[16]   CONTROLLING CHAOS [J].
OTT, E ;
GREBOGI, C ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1990, 64 (11) :1196-1199
[17]  
PARK JH, IN PRESS LMI OPTIMIZ
[18]   SYNCHRONIZATION IN CHAOTIC SYSTEMS [J].
PECORA, LM ;
CARROLL, TL .
PHYSICAL REVIEW LETTERS, 1990, 64 (08) :821-824
[19]   CONTINUOUS CONTROL OF CHAOS BY SELF-CONTROLLING FEEDBACK [J].
PYRAGAS, K .
PHYSICS LETTERS A, 1992, 170 (06) :421-428