Penalized maximum likelihood estimator for normal mixtures

被引:59
作者
Ciuperca, G
Ridolfi, A
Idier, J
机构
[1] Univ Lyon 1, Lab Probabil Combinatoire & Stat, F-69366 Lyon 07, France
[2] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
[3] CNRS, Signaux & Syst Lab, F-75700 Paris, France
关键词
Bayesian estimation; mixtures of normal distributions; penalized maximum likelihood; strong consistency;
D O I
10.1111/1467-9469.00317
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The estimation of the parameters of a mixture of Gaussian densities is considered, within the framework of maximum likelihood. Due to unboundedness of the likelihood function, the maximum likelihood estimator fails to exist. We adopt a solution to likelihood function degeneracy which consists in penalizing the, likelihood function. The resulting penalized likelihood function is then bounded over the parameter space and the existence of the penalized maximum likelihood estimator is granted. As original contribution we provide asymptotic properties, and in particular a consistency proof, for the penalized maximum likelihood estimator. Numerical examples are provided in the finite data case, showing the performances of the penalized estimator compared to the standard one.
引用
收藏
页码:45 / 59
页数:15
相关论文
共 35 条
[1]  
BIERNACKI C, 1997, 3521 INRIA
[2]  
BUTLER RW, 1986, J ROY STAT SOC B MET, V48, P1
[3]   Unsupervised deconvolution of sparse spike trains using stochastic approximation [J].
Champagnat, F ;
Goussard, Y ;
Idier, J .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (12) :2988-2998
[4]   A NOTE ON THE CONSISTENCY AND MAXIMA OF THE ROOTS OF LIKELIHOOD EQUATIONS [J].
CHANDA, KC .
BIOMETRIKA, 1954, 41 (1-2) :56-61
[5]   The consistency of estimators in finite mixture models [J].
Cheng, RCH ;
Liu, WB .
SCANDINAVIAN JOURNAL OF STATISTICS, 2001, 28 (04) :603-616
[6]  
DAY NE, 1969, BIOMETRIKA, V56, P463, DOI 10.1093/biomet/56.3.463
[7]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[8]  
DIEBOLT J, 1994, J ROY STAT SOC B MET, V56, P363
[9]   BAYESIAN DENSITY-ESTIMATION AND INFERENCE USING MIXTURES [J].
ESCOBAR, MD ;
WEST, M .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (430) :577-588
[10]  
Feng ZD, 1996, J ROY STAT SOC B MET, V58, P609