Fabrication of suspended silica glass nanofibers from polymeric materials using a scanned electrospinning source

被引:65
作者
Kameoka, J
Verbridge, SS
Liu, HQ
Czaplewski, DA
Craighead, HG [1 ]
机构
[1] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA
[2] Cornell Univ, Nanobiotechnol Ctr, Ithaca, NY 14853 USA
关键词
D O I
10.1021/nl048840p
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report on the fabrication of suspended silicon dioxide nanofibers using a scanned electrospinning source and a calcination process. We measured the mechanical oscillations of individual suspended fibers, driven by a piezoelectric actuator. The scanned electrospinning method was utilized to extrude polymeric nanofibers from a blended polymeric solution and deposit oriented nanofibers on patterned surfaces to form suspended structures. The deposited polymeric nanofibers were converted to silicon oxide by calcination without changing their morphologies. By utilizing this technique, a suspended nanofiber with a diameter of 120 nm was fabricated with a resonant frequency of 10.8 MHz and a mechanical quality factor of 1600. Because of the simplicity of the process steps to create organized inorganic nanofibers and the ability to produce suspended structures, this approach opens new opportunities in the study and device use of inorganic nanofibers.
引用
收藏
页码:2105 / 2108
页数:4
相关论文
共 21 条
[1]   Fabrication of nanoelectromechanical systems in single crystal silicon using silicon on insulator substrates and electron beam lithography [J].
Carr, DW ;
Craighead, HG .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1997, 15 (06) :2760-2763
[2]   A nanometre-scale mechanical electrometer [J].
Cleland, AN ;
Roukes, ML .
NATURE, 1998, 392 (6672) :160-162
[3]   Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J].
Cui, Y ;
Wei, QQ ;
Park, HK ;
Lieber, CM .
SCIENCE, 2001, 293 (5533) :1289-1292
[4]   Nonlithographic approach to nanostructure fabrication using a scanned electrospinning source [J].
Czaplewski, D ;
Kameoka, J ;
Craighead, HG .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2003, 21 (06) :2994-2997
[5]   Nanofluidic channels with elliptical cross sections formed using a nonlithographic process [J].
Czaplewski, DA ;
Kameoka, J ;
Mathers, R ;
Coates, GW ;
Craighead, HG .
APPLIED PHYSICS LETTERS, 2003, 83 (23) :4836-4838
[6]   Controlled deposition of electrospun poly(ethylene oxide) fibers [J].
Deitzel, JM ;
Kleinmeyer, JD ;
Hirvonen, JK ;
Tan, NCB .
POLYMER, 2001, 42 (19) :8163-8170
[7]  
DOSHI J, 1995, J ELECTROSTAT, V35, P151, DOI 10.1016/0304-3886(95)00041-8
[8]   Temperature-dependent internal friction in silicon nanoelectromechanical systems [J].
Evoy, S ;
Olkhovets, A ;
Sekaric, L ;
Parpia, JM ;
Craighead, HG ;
Carr, DW .
APPLIED PHYSICS LETTERS, 2000, 77 (15) :2397-2399
[9]   Single cell detection with micromechanical oscillators [J].
Ilic, B ;
Czaplewski, D ;
Zalalutdinov, M ;
Craighead, HG ;
Neuzil, P ;
Campagnolo, C ;
Batt, C .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2001, 19 (06) :2825-2828
[10]   Mechanical resonant immunospecific biological detector [J].
Ilic, B ;
Czaplewski, D ;
Craighead, HG ;
Neuzil, P ;
Campagnolo, C ;
Batt, C .
APPLIED PHYSICS LETTERS, 2000, 77 (03) :450-452