Investigations into the role of the plastidial peptide methionine sulfoxide reductase in response to oxidative stress in Arabidopsis

被引:133
作者
Romero, HM
Berlett, BS
Jensen, PJ
Pell, EJ
Tien, M [1 ]
机构
[1] Penn State Univ, Intercoll Program Plant Physiol, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Biochem & Mol Biol, Dept Plant Pathol, University Pk, PA 16802 USA
[3] NHLBI, NIH, Bethesda, MD 20892 USA
[4] Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA
关键词
D O I
10.1104/pp.104.046656
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Peptidyl Met residues are readily oxidized by reactive oxygen species to form Met sulfoxide. The enzyme peptide Met sulfoxide reductase (PMSR) catalyzes the reduction of Met sulfoxides back to Met. In doing so, PMSR is proposed to act as a last-chance antioxidant, repairing proteins damaged from oxidative stress. To assess the role of this enzyme in plants, we generated multiple transgenic lines with altered expression levels of the plastid form of PMSR (PMSR4). In transgenic plants, PMSR4 expression ranged from 95% to 40% (antisense) and more than 600% (overexpressing lines) of wild-type plants. Under optimal growing conditions, there is no effect of the transgene on the phenotype of the plants. When exposed to different oxidative stress conditions-methyl viologen, ozone, and high light-differences were observed in the rate of photosynthesis, the maximum quantum yield (F-v(l)/F-m ratio), and the Met sulfoxide content of the isolated chloroplast. Plants that overexpressed PMSR4 were more resistant to oxidative damage localized in the chloroplast, and plants that underexpressed PMSR4 were more susceptible. The Met sulfoxide levels in proteins of the soluble fraction of chloroplasts were increased by methyl viologen and ozone, but not by high-light treatment. Under stress conditions, the overexpression of PMSR4 lowered the sulfoxide content and underexpression resulted in an overall increase in content.
引用
收藏
页码:3784 / 3794
页数:11
相关论文
共 38 条
[1]  
[Anonymous], 2002, Oxidative stress in plants
[2]  
[Anonymous], 2003, OZONE AND PLANT CELL
[3]   PHOTOINHIBITION OF PHOTOSYSTEM-2 - INACTIVATION, PROTEIN DAMAGE AND TURNOVER [J].
ARO, EM ;
VIRGIN, I ;
ANDERSSON, B .
BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1143 (02) :113-134
[4]   Arabidopsis peptide methionine sulfoxide reductase2 prevents cellular oxidative damage in long nights [J].
Bechtold, U ;
Murphy, DJ ;
Mullineaux, PM .
PLANT CELL, 2004, 16 (04) :908-919
[5]   CYTOCHEMICAL STUDY OF CATALASE AND PEROXIDASE IN THE MESOPHYLL OF LOLIUM-RIGIDUM PLANTS TREATED WITH ISOPROTURON [J].
DEFELIPE, MR ;
LUCAS, MM ;
POZUELO, JM .
JOURNAL OF PLANT PHYSIOLOGY, 1988, 132 (01) :67-73
[6]   REDUCTION OF S-METHYL-L-CYSTEINE SULFOXIDE AND L-METHIONINE SULFOXIDE IN TURNIP AND BEAN LEAVES [J].
DONEY, RC ;
THOMPSON, JF .
BIOCHIMICA ET BIOPHYSICA ACTA, 1966, 124 (01) :39-&
[7]   A NEW METHOD OF MEASURING PROTEIN-METHIONINE-S-OXIDE REDUCTASE-ACTIVITY [J].
FERGUSON, DL ;
BURKE, JJ .
PLANT PHYSIOLOGY, 1992, 100 (01) :529-532
[8]  
FERGUSON DL, 1994, PHYSIOL PLANTARUM, V90, P253, DOI 10.1111/j.1399-3054.1994.tb00385.x
[9]   OXIDATION OF METHIONINE RESIDUES IN PROTEINS OF ACTIVATED HUMAN-NEUTROPHILS [J].
FLISS, H ;
WEISSBACH, H ;
BROT, N .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1983, 80 (23) :7160-7164
[10]   Repair of oxidized proteins - Identification of a new methionine sulfoxide reductase [J].
Grimaud, R ;
Ezraty, B ;
Mitchell, JK ;
Lafitte, D ;
Briand, C ;
Derrick, PJ ;
Barras, F .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (52) :48915-48920