Mediating high levels of gene transfer without cytotoxicity via hydrolytic cationic ester polymers

被引:37
作者
Carr, Louisa R. [1 ]
Jiang, Shaoyi [1 ]
机构
[1] Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
Gene transfer; Cell viability; Hydrolysis; Biocompatibility; INTRACELLULAR DELIVERY; PROTEIN ADSORPTION; NONVIRAL VECTORS; PROTON SPONGE; DNA; POLYETHYLENIMINE; SULFOBETAINE; RESISTANCE; CELLS; TRAFFICKING;
D O I
10.1016/j.biomaterials.2010.01.110
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Cationic polymers are widely studied as gene-delivery vehicles, but are limited by low transfection due to inhibited release of DNA, and high cytotoxicity from the requisite positive charges. Here, we introduce a hydrolytic cationic ester polymer containing both tertiary and quaternary amines, which packages DNA into nanoparticles and then releases DNA upon hydrolysis. Cells were transfected with these nanoparticles. Luciferase expression from a polymer with the tertiary/quaternary ratio of 1:1 was equal to that obtained using branched polyethylenimine (PEI), and expression from an acidified polymer with the ratio of 3:1 was 20 times higher than branched PEI. These ratios best balance proton sponging from tertiary amines and packaging ability from cations. Importantly, no hydrolysed polymer exhibited cytotoxicity; the zwitterionic nature of the hydrolysed polymer ensured that the quaternary amines in this work do not cause cell death. Hydrolysis is critical for effective and safe gene therapy. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4186 / 4193
页数:8
相关论文
共 45 条
[1]   Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis [J].
Akinc, A ;
Thomas, M ;
Klibanov, AM ;
Langer, R .
JOURNAL OF GENE MEDICINE, 2005, 7 (05) :657-663
[2]  
Akinc A, 2002, BIOTECHNOL BIOENG, V78, P503, DOI 10.1002/bit.20215
[3]  
Behr JP, 1997, CHIMIA, V51, P34
[4]   A VERSATILE VECTOR FOR GENE AND OLIGONUCLEOTIDE TRANSFER INTO CELLS IN CULTURE AND IN-VIVO - POLYETHYLENIMINE [J].
BOUSSIF, O ;
LEZOUALCH, F ;
ZANTA, MA ;
MERGNY, MD ;
SCHERMAN, D ;
DEMENEIX, B ;
BEHR, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (16) :7297-7301
[5]   Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines [J].
Chang, Y ;
Chen, SF ;
Zhang, Z ;
Jiang, SY .
LANGMUIR, 2006, 22 (05) :2222-2226
[6]   Development of biocompatible interpenetrating polymer networks containing a sulfobetaine-based polymer and a segmented polyurethane for protein resistance [J].
Chang, Yung ;
Chen, Shengfu ;
Yu, Qiuming ;
Zhang, Zheng ;
Bernards, Matthew ;
Jiang, Shaoyi .
BIOMACROMOLECULES, 2007, 8 (01) :122-127
[7]  
Chen S., 2007, Adv Mater, V30, P335
[8]   Strong resistance of a thin crystalline layer of balanced charged groups to protein adsorption [J].
Chen, Shengfu ;
Yu, Fuchen ;
Yu, Qiuming ;
He, Yi ;
Jiang, Shaoyi .
LANGMUIR, 2006, 22 (19) :8186-8191
[9]   Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces [J].
Cheng, Gang ;
Zhang, Zheng ;
Chen, Shengfu ;
Bryers, James D. ;
Jiang, Shaoyi .
BIOMATERIALS, 2007, 28 (29) :4192-4199
[10]   Regulated portals of entry into the cell [J].
Conner, SD ;
Schmid, SL .
NATURE, 2003, 422 (6927) :37-44