Vortex lines of the electromagnetic field

被引:56
作者
Bialynicki-Birula, I
Bialynicka-Birula, Z
机构
[1] Polish Acad Sci, Ctr Theoret Phys, PL-02668 Warsaw, Poland
[2] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland
[3] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland
[4] Coll Sci, PL-02668 Warsaw, Poland
来源
PHYSICAL REVIEW A | 2003年 / 67卷 / 06期
关键词
D O I
10.1103/PhysRevA.67.062114
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Relativistic definition of the phase of the electromagnetic field, involving two Lorentz invariants, based on the Riemann-Silberstein vector is adopted to extend our previous study [I. Bialynicki-Birula, Z. Bialynicka-Birula, and C. Sliwa, Phys. Rev. A 61, 032110 (2000)] of the motion of vortex lines embedded in the solutions of wave equations from Schrodinger wave mechanics to Maxwell theory. It is shown that time evolution of vortex lines has universal features; in Maxwell theory it is very similar to that in Schrodinger wave mechanics. Connection with some early work on geometrodynamics is established. Simple examples of solutions of the Maxwell equations with embedded vortex lines are given. Vortex lines in the Laguerre-Gaussian beams are treated in some detail.
引用
收藏
页数:8
相关论文
共 37 条
[1]   The orbital angular momentum of light [J].
Allen, L ;
Padgett, MJ ;
Babiker, M .
PROGRESS IN OPTICS, VOL XXXIX, 1999, 39 :291-372
[2]   Spin-orbit coupling in free-space Laguerre-Gaussian light beams [J].
Allen, L ;
Lembessis, VE ;
Babiker, M .
PHYSICAL REVIEW A, 1996, 53 (05) :R2937-R2939
[3]   ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES [J].
ALLEN, L ;
BEIJERSBERGEN, MW ;
SPREEUW, RJC ;
WOERDMAN, JP .
PHYSICAL REVIEW A, 1992, 45 (11) :8185-8189
[4]   Geometry of phase and polarization singularities, illustrated by edge diffraction and the tides [J].
Berry, M .
SECOND INTERNATIONAL CONFERENCE ON SINGULAR OPTICS (OPTICAL VORTICES): FUNDAMENTALS AND APPLICATIONS, 2001, 4403 :1-12
[5]  
Berry M., 1981, P HOUCHES SUMMER SCH, V35, P453
[6]  
Berry MV, 1998, J MOD OPTIC, V45, P1845, DOI 10.1080/09500349808231706
[7]   Knotting and unknotting of phase singularities: Helmholtz waves, paraxial waves and waves in 2+1 spacetime [J].
Berry, MV ;
Dennis, MR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (42) :8877-8888
[8]   Motion of vortex lines in quantum mechanics [J].
Bialynicki-Birula, I ;
Bialynicka-Birula, Z ;
Sliwa, C .
PHYSICAL REVIEW A, 2000, 61 (03) :7
[9]  
Bialynicki-Birula I, 2001, ACTA PHYS POL A, V100, P29
[10]   Exponential localization of photons [J].
Bialynicki-Birula, I .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5247-5250